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Algebraic coding theory studies the design of error-

correcting codes for reliable transmission of information 

across noisy channels.
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Introduction

• Transmission of classical information in time and space is nowadays

very easy (through noiseless channel).

It took centuries, and many ingenious developments and discoveries 

(writing, book printing, photography, movies, radio transmissions,TV, 

sounds recording) and the idea of the digitalization of all forms of

information to discover fully this property of information.

Coding theory develops methods to protect information against a 

noise.

Cryptography develops methods how to protect information against an

enemy (or an unauthorized user).



Basics of coding theory

Coding theory - theory of error correcting codes - is one of the most interesting 

and applied part of mathematics and informatics.

All real systems that work with digitally represented data, as CD players, TV, fax 

machines, internet, satelites, mobiles, require to use error correcting codes 

because all real channels are, to some extent, noisy.

 Coding theory problems  are therefore among the very basic and most frequent

problems of storage and transmission of information.

 Coding theory results allow to create reliable systems out of unreliable systems 

to store and/or to transmit information.

 Coding theory methods are often  elegant applications of very basic concepts 

and methods of (abstract) algebra.



Channel

is the physical medium through which information is transmitted.

(Telephone lines and the atmosphere are examples of channels.)

NOISE

may be caused by sunpots, lighting, meteor showers, random radio disturbance, 

poor typing, poor hearing, ….

TRANSMISSION GOALS

1. Fast encoding of information.

2. Easy transmission of encoded messages.

3. Fast decoding of received messages.

4. Reliable correction of errors introduced in the channel.

5. Maximum transfer of information per unit time.



Basic Idea

METHOD OF FIGHTING ERRORS: REDUNDANCY!!!

0 is encoded as 00000 and 1 is encoded as 11111.

The details of techniques used to protect information against noise in 

practice are sometimes rather complicated, but basic principles are easily 

understood.

The key idea is that in order to protect a message against a noise, we 

should encode the message by adding some redundant information to the 

message.

In such a case, even if the message is corrupted by a noise, there will be 

enough redundancy in the encoded message to recover, or to decode the 

message completely.



EXAMPLE: Codings of a path avoiding an enemy territory

Story Alice and Bob share an identical map (Fig.1) gridded

as shown in Fig.1. Only Alice knows the route through which 

Bob can reach her avoiding the enemy territory. Alice wants to 

send Bob the following information about the safe route he 

should take.



EXAMPLE: Codings of a path avoiding an enemy territory

NNWNNWWSSWWNNNNWWN

Three ways to encode the safe 

route from Bob to Alice are:

1. C1 = {00, 01, 10, 11}

Any error in the code word
000001000001011111010100000000010100

would be a disaster.



EXAMPLE: Codings of a path avoiding an enemy territory

2. C2 = {000, 011, 101, 110}

A single error in encoding each of symbols N, W, S, E could be 

detected.

3. C3 = {00000, 01101, 10110, 11011}

A single error in decoding each of symbols N, W, S, E could be 

corrected.



Basic terminology
Block code - a code with all words of the same length.

Codewords - words of some code.

Basic assumptions about channels

1. Code length preservation Each output codeword of a channel has the same 

length as the input codeword. 

2.  Independence of  errors The probability of any one symbol being affected in 

transmissions is the same.

Basic strategy for  decoding

For decoding we use the so-called maximal likehood principle, or nearest neighbor

decoding strategy, which says that the receiver should  decode  a word w' as that 

codeword w that is  the closest one to w'.



Hamming distance

The intuitive concept of “closeness'' of two words is well formalized through Hamming distance
d(x, y) of words x, y.

For two words x, y

d(x, y) = the number of symbols x and y differ.

Example: d(10101, 01100) = 3, d(fourth, eighth) = 4

Properties of Hamming distance
(1) d(x, y) = 0 iff x = y

(2) d(x, y) = d(y, x)

(3) d(x, z) ≤ d(x, y) + d(y, z) triangle inequality

An important parameter of codes C is their minimal distance.

d(C) = min {d(x, y) | x,y  C, x ≠ y},

because it gives the smallest number of errors needed to change one codeword into anther.

Theorem Basic error correcting theorem

(1) A code C can detected up to t errors if d(C) ≥ t+ 1.

(2) A code C can correct up to t errors if d(C)≥ 2t + 1.



Notation and Examples

Notation: An (n,M,d) - code C is a code such that

• n - is the length of codewords.

• M - is the number of codewords.

• d - is the minimum distance in C.

Example:

C1 = {00, 01, 10, 11} is a (2,4,1)-code.

C2 = {000, 011, 101, 110} is a (3,4,2)-code.

C3 = {00000, 01101, 10110, 11011} is a (5,4,3)-code.

Comment: A good (n,M,d) code has small n and large M and d.



The main coding theory problems

A good (n,M,d) -code has small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d for 

given values of the other two.

Notation: Aq (n,d) is the largest M such that there is an q -nary (n,M,d) -code. 

Theorem (a) Aq (n,1) = qn;

(b) Aq (n,n) = q. 

Theorem Suppose d is odd. Then a binary (n,M,d) -code exists iff a binary 

(n +1,M,d +1) -code exists. 



A BIT OF HISTORY
The subject of error-correcting codes arose originally as a response

to practical problems in the reliable communication of digitally

encoded information.

The discipline was initiated in the paper

Claude Shannon: A mathematical theory of communication, Bell 

Syst.Tech. Journal V27, 1948, 379-423, 623-656

Shannon's paper started the scientific discipline information theory

and error-corecting codes are its part.

Originally, information theory was a part of electrical engineering.

Nowadays, it is an important part of mathematics and also of

informatics.



Linear codes

Most of the important codes are special types of  so-

called linear codes.

Linear codes are of importance because they have 

very concise description, 

very nice properties, 

very easy encoding

and 

in principle quite easy decoding.



Linear codes

Linear codes are special sets of words of the length n over an alphabet {0,..,q -1}, 
where q is a power of prime.

Since now on  sets of words Fq
n will  be considered as vector spaces V(n,q) of vectors of 

length n with elements from the set {0,..,q -1} and arithmetical operations will be taken 
modulo q.

The set {0,..,q -1} with operations + and  modulo q is called also the Galois field GF(q).

Definition A subset C  V(n,q) is a linear code if

(1) u + v  C for all u, v  C

(2) au  C for all u  C, a  GF(q)

Example Codes C1, C2, C3 are linear codes.

Lemma A subset C  V(n,q) is a linear code if one of the following conditions is satisfied

(1) C is a subspace of V(n,q)

(2) sum of any two codewords from C is in C (for the case q = 2)

If C is a k -dimensional subspace of V(n,q), then C is called [n,k] -code. It has qk codewords.

Linear codes are also called “group codes“.



Which of the following binary codes are linear?

C1 = {00, 01, 10, 11}

C2 = {000, 011, 101, 110}

C3 = {00000, 01101, 10110, 11011}

C5 = {101, 111, 011}

C6 = {000, 001, 010, 011}

C7 = {0000, 1001, 0110, 1110}



How to create a linear code

Notation If S is a set of vectors of a vector space, then 
let 𝑆 be the set of all linear combinations of vectors 
from S.

Theorem For any subset S of a linear space, 𝑆 is a 
linear space that consists of the following words:

• the zero word,

• all words in S,

• all sums of two or more words in S.

Example S = {0100, 0011, 1100}

𝑺 = {0000, 0100, 0011, 1100, 0111, 1011, 1000, 1111}.



Basic properties of linear codes

Notation: w(x) (weight of x) is the number of non-zero entries of x.

Lemma If x, y  V(n,q), then d(x,y) = w(x - y).

Proof x - y has non-zero entries in exactly those positions where x and y differ. 

Theorem Let C be a linear code and let weight of C, 

notation w(C), be the smallest of the weights of non-zero 

codewords of C. Then d(C) = w(C).



Basic properties of linear codes

If C is a linear [n,k] -code, then it has a basis consisting of k codewords. 

Example

Code

C4 = {0000000, 1111111, 1000101, 1100010,

0110001, 1011000, 0101100, 0010110,

0001011, 0111010, 0011101, 1001110,

0100111, 1010011, 1101001, 1110100}

has the basis

{1111111, 1000101, 1100010, 0110001}.

How many different bases has a linear code?



Advantages and disadvantages of linear codes

Advantages - big.

1.  Minimal distance d(C) is easy to compute if C is a linear code.

2.  Linear codes have simple specifications.

• To specify a non-linear code usually all codewords have to be listed.

• To specify a linear [n,k] -code it is enough to list k codewords.

Definition A k  n matrix whose rows form a basis of a linear [n,k] -code (subspace) C
is said to be the generator matrix of C.

Example The generator matrix of the code

3. There are simple encoding/decoding procedures for linear codes.
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Advantages and disadvantages of linear codes

Disadvantages of linear codes 

are small:

1. Linear q -codes are not defined unless q is a prime power.

2. The restriction to linear codes might be a restriction to weaker codes than 

sometimes desired.



Encoding with  a linear code

is a vector  matrix multiplication

Let C be a linear  [n,k] -code over GF(q) with a generator matrix G. 

Theorem C has qk codewords. 

Proof Theorem follows from the fact that each codeword of C can be expressed 
uniquely as a linear combination of the basis vectors.

Corollary The code C can be used to encode uniquely qk messages.

Let us identify messages with elements V(k,q). 

Encoding of a message u = (u1, … ,uk) with the code C:

.  of rows are  ,...,    where 11
GrrruGu k

k

i ii 
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Uniqueness of encodings

with linear codes

Theorem If G is a generator matrix of a binary linear code C of length n and dimension 

k, then

v = uG

ranges over all 2k codewords of C as u ranges over all 2k words of length k.

Therefore

C = { uG | u  {0,1}k }

Moreover

u1G = u2G

if and only if

u1 = u2.



Decoding of linear codes

Decoding problem: If a  codeword: x = x1 … xn is sent and the word y = y1 … yn is 
received, then e = y – x = e1 … en is said to be the error vector. The decoder must 
decide from y which x was sent, or, equivalently, which error e occurred. 

To describe main Decoding method some technicalities have to be introduced

Definition Suppose C is an [n,q] -code over GF(q) and a  V(n,q). Then the set

a + C = { a + x | x  C }

is called a coset of C in V(n,q).



Decoding of linear codes

Example Let C = {0000, 1011, 0101, 1110}

Cosets:

0000 + C =  C,

1000 + C =  {1000, 0011, 1101, 0110},

0100 + C =  {0100, 1111, 0001, 1010},

0010 + C =  {0010, 1001, 0111, 1100}.

Are there some other cosets in this case?

Theorem Suppose C is a linear [n,k] -code over GF(q). Then

(a) every vector of V(n,k) is in some coset of C,

(b) every coset contains exactly qk elements,

(c) two cosets are either disjoint or identical.



Dual codes
Inner product of two vectors (words)

u = u1 … un, v = v1 … vn

in V(n,q) is an element of GF(q) defined by

u  v = u1v1 + … + unvn.

Example In V(4,2): 1001  1001 = 0

In V(4,3): 2001  1210 = 2

If u  v = 0 then words (vectors) u and v are called orthogonal.

Properties If u, v, w  V(n,q), l, m  GF(q), then

u  v = v  u, (lu + mv)  w = l (u  w) + m (v  w).

Given a linear [n,k] -code C, then dual code of C, denoted by C^, is defined by

C^ = {v  V(n,q) | v  u = 0 if u  C}.

Lemma Suppose C is an [n,k] -code having a generator matrix G. Then for v  V(n,q)

v  C^ <=> vGT = 0,

where GT denotes the transpose of the matrix G.

Proof Easy.



Parity check matrices

Theorem Suppose C is a linear [n,k] -code over GF(q), then the dual code C^ is a 

linear [n,n - k] -code.

Definition A parity-check matrix H for an [n,k] -code C is a generator matrix of C^. 

Theorem If H is parity-check matrix of C, then

C = {x  V(n,q) | xHT = 0},

and therefore any linear code is completely specified by a parity-check matrix.

Theorem If G = [Ik | A] is the standard form generator matrix of an [n,k] -code C, 
then a parity check matrix for C is H = [-AT | In-k].



Cyclic codes

Cyclic codes are of interest and importance because

• They posses rich algebraic structure that can be utilized in a variety 
of ways.

• They have extremely concise specifications.

• They can be efficiently implemented using simple shift registers.

• Many practically important codes are cyclic.



BASIC DEFINITION AND EXAMPLES

Definition A code C is cyclic if

(i) C is a linear code; 

(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever a0,… an -1  C, 
then also an -1 a0 … an –2  C.

Example

(i) Code C = {000, 101, 011, 110} is cyclic.

(ii) The binary linear code {0000, 1000, 0100, 0010, 0001} is not a cyclic



EXAMPLE of a CYCLIC CODE

The code with  the generator matrix

has codewords

c1  = 1011100 c2 = 0101110 c3 =0010111

c1 + c2 = 1110010 c1 + c3 = 1001011 c2 + c3 = 0111001

c1 + c2 + c3 = 1100101

and it is cyclic because the right shifts have the following impacts

c1 c2, c2 c3, c3 c1 + c3

c1 + c2 c2 + c3, c1 + c3 c1 + c2 + c3, c2 + c3 c1

c1 + c2 + c3 c1 + c2



















1110100

0111010

0011101

G



POLYNOMIALS over GF(q)

A codeword of a cyclic code is usually denoted

a0 a1…an -1

and to each such a codeword the polynomial

a0 + a1 x + a2 x2 + … + an -1 xn -1

is associated.

Fq[x] denotes the set of all polynomials over GF(q ). 

deg (f(x )) = the largest m such that xm has a non-zero coefficient in f(x).

Multiplication of polynomials If f(x), g(x)  Fq[x], then

deg (f(x) g(x)) = deg (f(x)) + deg (g(x)).



POLYNOMIALS over GF(q)

Division of polynomials For every pair of polynomials a(x), b(x)  0 in Fq[x] there 
exists a unique pair of polynomials q(x), r(x) in Fq[x] such that

a(x) = q(x)b(x) + r(x), deg (r(x)) < deg (b(x)).

Definition Let f(x) be a fixed polynomial in Fq[x]. Two polynomials g(x), h(x) are said 
to be congruent modulo f(x), notation

g(x)  h(x) (mod f(x)),

if g(x) - h(x) is divisible by f(x).



RING of POLYNOMIALS

The set of polynomials in Fq[x] of degree less than deg (f(x)), with addition and 
multiplication modulo f(x) forms a ring denoted Fq[x]/f(x). 

Example Calculate (x + 1)2 in F2[x] / (x2 + x + 1). It holds

(x + 1)2 = x2 + 2x + 1  x2 + 1  x (mod x2 + x + 1).

How many elements has Fq[x] / f(x)?

Result | Fq[x] / f(x) | = q deg (f(x)).

Example Addition and multiplication in F2[x] / (x2 + x + 1)

+ 0 1 x 1 + x

0 0 1 x 1 + x

1 1 0 1 + x x

x x 1 + x 0 1

1 + x 1 + x x 1 0

 0 1 x 1 + x

0 0 0 0 0

1 0 1 X 1 + x

x 0 x 1 + x 1

1 + x 0 1 + x 1 x



RING of POLYNOMIALS

Definition A polynomial f(x) in Fq[x] is said to be reducible if f(x) = a(x)b(x), where 
a(x), b(x)  Fq[x] and

deg (a(x)) < deg (f(x)), deg (b(x)) < deg (f(x)).

If f(x) is not reducible, it is irreducible in Fq[x].

Theorem The ring Fq[x] / f(x) is a field if f(x) is irreducible in Fq[x].



Rn = Fq[x] / (xn - 1)

Computation modulo xn – 1

Since xn  1 (mod xn -1) we can compute f(x) mod xn -1 as follow:

In f(x) replace xn by 1, xn +1 by x, xn +2 by x2, xn +3 by x3, …

Identification of words with polynomials

a0 a1… an -1  a0 + a1 x + a2 x2 + … + an -1 xn -1

Multiplication by x in Rn corresponds to a single cyclic shift

x (a0 + a1 x + … an -1 xn -1) = an -1 + a0 x + a1 x2 + … + an -2 xn -1



Algebraic characterization of cyclic codes

Theorem A code C is cyclic if C satisfies two conditions 

(i) a(x), b(x)  C   a(x) + b(x)  C

(ii) a(x)  C, r(x)  Rn r(x)a(x)  C

Proof

(1) Let C be a cyclic code. C is linear   (i) holds. 

(ii) Let a(x)  C, r(x) = r0 + r1x + … + rn -1x
n -1

r(x)a(x) = r0a(x) + r1xa(x) + … + rn -1x
n -1a(x)

is in C by (i) because summands are cyclic shifts of a(x). 

(2) Let (i) and (ii) hold 

 Taking r(x) to be a scalar the conditions imply linearity of C. 

 Taking r(x) = x the conditions imply cyclicity of C.



CONSTRUCTION of CYCLIC CODES

Notation If f(x)  Rn, then

 f(x) = {r(x)f(x) | r(x)  Rn}

(multiplication is modulo xn -1). 

Theorem For any f(x)  Rn, the set  f(x) is a cyclic code (generated by f).

Proof We check conditions (i) and (ii) of the previous theorem.

(i) If a(x)f(x)   f(x) and b(x)f(x)   f(x) , then

a(x)f(x) + b(x)f(x) = (a(x) + b(x)) f(x)   f(x)

(ii) If a(x)f(x)   f(x) , r(x)  Rn, then

r(x) (a(x)f(x)) = (r(x)a(x)) f(x)   f(x) .



CONSTRUCTION of CYCLIC CODES

Example C =  1 + x2  , n = 3, q = 2.

We have to compute r(x)(1 + x2) for all r(x)  R3.

R3 = {0, 1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x + x2}.

Result C = {0, 1 + x, 1 + x2, x + x2}

C = {000, 011, 101, 110}



Characterization theorem for cyclic codes

We show that all cyclic codes C have the form C =  f(x) for some f(x)  Rn.

Theorem Let C be a non-zero cyclic code in Rn. Then 

• there exists unique monic polynomial g(x) of the smallest degree such that

• C =  g(x)

• g(x) is a factor of xn -1.



Characterization theorem for cyclic codes

Proof 

(i) Suppose g(x) and h(x) are two monic polynomials in C of the smallest degree. 

Then the polynomial g(x) - h(x)  C and it has a smaller degree and a multiplication 
by a scalar makes out of it a monic polynomial. If g(x)  h(x) we get a contradiction. 

(ii) Suppose a(x)  C. Then a(x) = q(x)g(x) + r(x) (deg r(x) < deg g(x))

and r(x) = a(x) - q(x)g(x)  C. By minimality r(x) = 0

and therefore a(x)   g(x) .

(iii) Clearly,

xn –1 = q(x)g(x) + r(x)   with   deg r(x) < deg g(x)

and therefore r(x)  -q(x)g(x) (mod xn -1) and

r(x)  C r(x) = 0 g(x) is a factor of xn -1.



GENERATOR POLYNOMIALS

Definition If for a cyclic code C it holds

C =  g(x) ,

then g is called the generator polynomial for the code C.



HOW TO DESIGN CYCLIC CODES?

The last claim of the previous theorem gives a recipe to get all cyclic codes of 

given length n. 

Indeed, all we need to do is to find all factors of

xn -1.

Problem: Find all binary cyclic codes of length 3. 

Solution: Since

x3 – 1 =          (x + 1)(x2 + x + 1)

both  factors are irreducible in GF(2)

we have the following generator polynomials and codes. 

Generator polynomials Code in R3 Code in V(3,2)

1 R3 V(3,2)

x + 1 {0, 1 + x, x + x2, 1 + x2} {000, 110, 011, 101}

x2 + x + 1 {0, 1 + x + x2} {000, 111}

x3 – 1 ( = 0) {0} {000}



Design of generator matrices for cyclic codes

Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial

g(x) = g0 + g1x + … + grx
r.

Then dim (C) = n - r and a generator matrix G1 for C is






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




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
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210
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Example
The task is to determine all ternary codes of length 4 and  generators for them.

Factorization of x4 - 1 over GF(3) has the form

x4 - 1 = (x - 1)(x3 + x2 + x + 1) = (x - 1)(x + 1)(x2 + 1)

Therefore there are 23 = 8 divisors of x4 - 1 and each generates a cyclic code.

Generator polynomial Generator matrix

1 I4

x - 1

x + 1

x2 + 1

(x - 1)(x + 1) = x2 - 1

(x - 1)(x2 + 1) = x3 - x2 + x - 1 [ -1 1 -1 1 ]

(x + 1)(x2 + 1) [ 1 1 1 1 ]

x4 - 1 = 0 [ 0 0 0 0 ]
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
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0101

1010

0101
  

1100

0110

0011

  

1100

0110

0011



Check polynomials and parity check matrices for cyclic codes

Let C be a cyclic [n,k]-code with the generator polynomial g(x) (of degree n -

k). By the last theorem g(x) is a factor of xn - 1. Hence

xn - 1 = g(x)h(x)

for some h(x) of degree k (where h(x) is called the check polynomial of C). 

Theorem Let C be a cyclic code in Rn with a generator polynomial g(x) 

and a check polynomial h(x). Then an c(x)  Rn is a codeword of C if 

c(x)h(x)  0 - this and next congruences are modulo xn - 1. 



POLYNOMIAL REPRESENTATION of DUAL CODES

Since dim ( h(x) ) = n - k = dim (C^) we might easily be fooled to think that the 

check polynomial h(x) of the code C generates the dual code C^.

Reality is “slightly different'':

Theorem Suppose C is a cyclic [n,k]-code with the check polynomial

h(x) = h0 + h1x + … + hkx
k,

then

(i) a parity-check matrix for C is

(ii) C^ is the cyclic code generated by the polynomial

i.e. the reciprocal polynomial of h(x).
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Constacyclic Codes

Definition Let 𝜆 be a unit of a finite ring 𝑅. A code 𝐶 of 
length 𝑛 over 𝑅 is 𝜆-constacyclic if 
𝜆𝑐𝑛−1, 𝑐0, … , 𝑐𝑛−2 ∈ 𝐶, for any 𝑐0, 𝑐1, … , 𝑐𝑛−1 ∈ 𝐶.

Definition Let 𝑅 be a finite commutative ring with identity. 
A code 𝐶 of length 𝑛 over 𝑅 is linear if it is 𝑅-submodule of 
𝑅𝑛.

Example A code 𝐶 = {0000, 1111, 2222, 3333, 0202, 1313,
2020, 3131, 0022, 1133, 2200, 3311, 0220, 1331, 2002, 3113} is a 
linear code of length 4 over ℤ4. 

Note If 𝑅 = 𝔽𝑝𝑚 , a linear code over 𝑅 is a subspace of 𝑅𝑛



Constacyclic Codes

• If 𝜆 = 1, it is said to be cyclic.
• If 𝜆 = −1, it is said to be negacyclic.

The map 𝜋: 𝑅𝑛 →
𝑅[𝑥]

𝑥𝑛−𝜆
defined by 

𝜋 𝑐0, 𝑐1, … , 𝑐𝑛−1 = 𝑐0 + 𝑐1𝑥 + ⋯+ 𝑐𝑛−1𝑥
𝑛−1, ∀ 𝑐0, 𝑐1, … , 𝑐𝑛−1 ∈ 𝑅𝑛. 

Proposition A linear code 𝐶 of length 𝑛 over 𝑅 is 𝜆-

constacyclic if and only if 𝜋(𝐶) is an ideal of 
𝑅[𝑥]

𝑥𝑛−𝜆
. 

Thus, we usually view (𝑐0, 𝑐1, … , 𝑐𝑛−1) as 𝑐0 + 𝑐1𝑥 +⋯+ 𝑐𝑛−1𝑥
𝑛−1

and a linear 𝜆-constacyclic code as an ideal of 
𝑅[𝑥]

𝑥𝑛−𝜆
.



Constacyclic Codes

𝜆-constacyclic code ideal

𝑅𝑛
𝑅[𝑥]

⟨𝑥𝑛 − 𝜆⟩

A dual code 𝑪⊥ is a set of 𝒏-tuple over 𝑹 that 
codewords in 𝑪⊥ are orthogonal to all codeword in 𝑪. 



Research Topic in Algebraic 
Coding Theory

Type

Length

Alphabet

Negacyclic code

Linear code

Constacyclic code

Cyclic code

Hamming codes Peparata code

Repeated-root Simple-root

𝔽𝑝𝑚

Finite field

ℤ𝑝𝑚

Chain ring Non-chain ring

Local ring

Frobenius ring

Non-local ring

Non-linear code

Kerdock code

𝔽2

Not field

ℤ4
𝔽𝑝𝑚[𝑢]

𝑢𝑎

𝔽2[𝑢, 𝑣]

𝑢2, 𝑣2
ℤ4[𝑢]

𝑢2
ℤ4[𝑢]

𝑢2 − 2𝑢

𝔽2[𝑣]

𝑣2 − 1

𝔽𝑝𝑚[𝑣]

𝑣2 − 1

𝔽𝑝𝑚[𝑢]

𝑢2

𝔽2[𝑢]

𝑢2
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The central result of this work was that certain 
non-linear codes over ℤ2 could be viewed as linear codes 
over ℤ4 via a Gray map in [3,4].

Introduction and preliminaries

During the first 40 years, the alphabet was usually 
a finite field. However, there were a few papers written 
where the alphabet was a ring.

The finite rings

ℤ4
𝔽2[𝑢]

⟨𝑢2⟩
(𝔽2 + 𝑢𝔽2) 𝔽4

𝔽2[𝑣]

⟨𝑣2+𝑣⟩
(𝔽2 + 𝑣𝔽2)
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Introduction and preliminaries

The length of codes
Repeated-root codes Simple-root codes

To study ideals of 
𝑅[𝑥]

𝑥𝑛−𝜆
, the factorization of 𝑥𝑛 − 𝜆 depends on 𝑛

and unit 𝜆. Thus, the repeated-root codes are easy to determine, i.e., 
𝑥𝑛𝑝

𝑠
+ 1 = 𝑥𝑛 + 1 𝑝𝑠 over 𝔽𝑝𝑚 .

56

The length of codes is not relatively 
prime with characteristic of a finite 
ring. In addition, some repeated-
root codes have a good parameter 
for coding theory.

The length of codes is relatively 
prime with characteristic.



The scope of this research

Type

Length

Alphabet

Negacyclic codes

• Gray image of negacyclic codes over ℤ4 is a binary cyclic code .
• There exist quantum codes constructed from negacyclic codes 

Repeated-root 3𝑝𝑠 and 8𝑝𝑠

Finite commutative chain ring 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚

• It has the unique maximal ideal ⟨𝑢⟩.

• 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚: =
𝔽𝑝𝑚[𝑢]

⟨𝑢2⟩
= {𝑎 + 𝑢𝑏: 𝑎, 𝑏 ∈ 𝔽𝑝𝑚}

• 𝑎 + 𝑢𝑏 is invertible if and only if 𝑎 is a unit.
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Literature Review

Outline of repeated-root constacyclic codes over 𝔽𝒑𝒎 + 𝒖𝔽𝒑𝒎

2009

2010

Constacyclic codes of length 2𝑠 over 𝔽2𝑚 + 𝑢𝔽2𝑚 [10]

Constacyclic codes of length 𝑝𝑠 over 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚 [11]

Negacyclic codes of length 2𝑝𝑠 over 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚 [12]

Constacyclic codes of length 2𝑝𝑠 over 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚 [13]

2015

2016

Constacyclic codes of length 4𝑝𝑠 over 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚 , 𝑝
𝑚 ≡ 1 (𝑚𝑜𝑑 4) [14]

Constacyclic codes of length 4𝑝𝑠 over 𝔽𝑝𝑚 + 𝑢𝔽𝑝𝑚 , 𝑝𝑚 ≡ 3 (𝑚𝑜𝑑 4) [15,16]

2017

2018
2019

Length 3𝑝𝑠 ??

Length 8𝑝𝑠 ??
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Main results (Negacyclic codes of length 3𝑝𝑠)

𝒑𝒎 ≡ 𝟏 (𝒎𝒐𝒅 𝟑)

𝒑𝒎 ≡ 𝟐 (𝒎𝒐𝒅 𝟑)

𝒙𝟑𝒑
𝒔
+ 𝟏 = (𝒙𝒑

𝒔
+ 𝟏)(𝒙𝒑

𝒔
− 𝜹𝟏)(𝒙

𝒑𝒔 − 𝜹𝟐)

𝒙𝟑𝒑
𝒔
+ 𝟏 = 𝒙𝒑

𝒔
+ 𝟏 𝒙𝟐 − 𝒙 + 𝟏

𝒑𝒔

𝛿𝑖 = −𝜉
𝑖 𝑝𝑚−1 𝑝𝑠

3

Let 𝑝 ≠ 3 be a prime. Each negacyclic code is 

viewed as an ideal of 
𝔽𝑝𝑚+𝑢𝔽𝑝𝑚 [𝑥]

𝑥3𝑝
𝑠
+1

.
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Main results (Negacyclic codes of length 8𝑝𝑠)

Let 𝑝 be an odd prime. Each negacyclic code is viewed as 

an ideal of 
𝔽𝑝𝑚+𝑢𝔽𝑝𝑚 [𝑥]

𝑥8𝑝
𝑠
+1

. In this subsection, we divide it into 5 

cases, i.e., 

1. 𝑝𝑚 ≡ 1 𝑚𝑜𝑑 16 ,

2. 𝑝𝑚 ≡ 3,11 𝑚𝑜𝑑 16 ,

3. 𝑝𝑚 ≡ 5,13 𝑚𝑜𝑑 16 ,

4. 𝑝𝑚 ≡ 7,15 𝑚𝑜𝑑 16 ,

5. 𝑝𝑚 ≡ 9 𝑚𝑜𝑑 16 .
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