

Construction of a gyrogroup from a group

Teerapong Suksumran

Department of Mathematics, Faculty of Science Chiang Mai University, Thailand

Conference on Recent Trends in Algebra and Related Topics Chiang Mai University

January 19-20, 2023

• □ > • □ > • □ > •

Outline

2 Connection between groups and gyrogroups

3 Construction of a gyrogroup from a group

4 Acknowledgments

What is a gyrogroup?

Gyrogroup-group-like structure

- Consisting of one set with one binary operation
- Operation NOT associative, NOT a group, in general
- Having associativity-correction maps—gyroautomorphisms
- Having algebraic properties like groups
- Being a generalization of groups
- First introduced by Abraham A. Ungar

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gyrogroups—an axiom approach

Let *G* be a non-empty set and let \oplus be a binary operation on *G*. Then (G, \oplus) is a gyrogroup if

- $\exists e \in G \ \forall a \in G, a \oplus e = a = e \oplus a$
- 2 $\forall a \in G \exists b \in G, b \oplus a = e = a \oplus b$
- $\forall a, b \in G \exists gyr[a, b], gyr[b, a] \in Aut(G, \oplus)$ such that
 - $a \oplus (b \oplus c) = (a \oplus b) \oplus gyr[a, b]c$
 - $(a \oplus b) \oplus c = a \oplus (b \oplus \operatorname{gyr}[b, a]c)$

(left gyroassociative law) (right gyroassociative law)

- - $gyr[a \oplus b, b] = gyr[a, b]$
 - $gyr[a, b \oplus a] = gyr[a, b]$

(left loop property) (right loop property)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gyrocommutative gyrogroups

A gyrogroup (G, \oplus) that satisfies the commutative-like law,

$$a \oplus b = \operatorname{gyr}[a, b](b \oplus a) \tag{1}$$

for all $a, b \in G$, is called a gyrocommutative gyrogroup, analogous to abelian groups.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Concrete example of a gyrogroup—Möbius addition

Set $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Möbius addition [1], \oplus_M , is given by

$$a \oplus_M b = \frac{a+b}{1+\bar{a}b} \tag{2}$$

for all $a, b \in \mathbb{D}$. Then (\mathbb{D}, \oplus_M) forms a gyrocommutative gyrogroup that is not a group.

[1] A. Ungar, *The holomorphic automorphism group of the complex disk*, Aequationes Mathmematicae **47** (1994)

Conference on Recent Trends in Algebra

Groups and gyrogroups

Recall the gyroassociative law

 $a \oplus (b \oplus c) = (a \oplus b) \oplus gyr[a, b]c$ $(a \oplus b) \oplus c = a \oplus (b \oplus gyr[b, a]c)$

- Every group is a gyrogroup by defining gyr[*a*, *b*] to be the identity automorphism.
- Any gyrogroup with trivial gyroautomorphisms is a group.

A non-degenerate gyrogroup is a gyrogrop that has at least one non-trivial gyroautomorphism.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Groups and gyrogroups

GROUP	GYROGROUP
group identity 1	gyrogroup identity e
inverse element a^{-1}	inverse element $\ominus a$
the associative law	the gyroassociative law
subgroup	subgyrogroup
normal subgroup	normal subgyrogroup
quotient group	quotient gyrogroup
group homomorphism	gyrogroup homomorphism
group isomorphism	gyrogroup isomorphism
abelian group	gyrocommutative gyrogroup
	_

•

Conference on Recent Trends in Algebra

^[2] T. S., Essays in Mathematics and Its Applications: In Honor of Vladimir Arnold, in: Th.M. Rassias, P.M. Pardalos (Eds.), *The Algebra of Gyrogroups: Cayley's Theorem, Lagrange's Theorem, and Isomorphism Theorems*, Springer, Cham, 2016, pp.369–437(E + (E +) E -) (

Relationship between a gyrogroup and its symmetric group

Let *G* be a gyrogroup and let $a \in G$. The left gyrotranslation by *a*, denoted by L_a and defined by $L_a(x) = a \oplus x, x \in G$, is a permutation of *G*. Set

 $\hat{G} = \{L_a: a \in G\}.$

Here is a nice relationship between \hat{G} and Sym(G).

Theorem 1

Viewing Sym(G) as the usual symmetric group, we have

- L_e , which is the identity map, is in \hat{G}
- **2** $X \in \hat{G}$ implies $X^{-1} \in \hat{G}$
- **3** *X*, *Y* \in \hat{G} implies *X* \circ *Y* \circ *X* \in \hat{G} .

That is, \hat{G} is a twisted subgroup, but not subgroup, of Sym(*G*).

Gyrotriples

A subset *B* of a group Γ is a twisted subgroup of Γ if (i) $1 \in B$, 1 being the identity of Γ ; (ii) $b \in B$ implies $b^{-1} \in B$; and (iii) $a, b \in B$ implies $aba \in B$.

A subset *B* of a group Γ is a (left) transversal to a subgroup Ξ of Γ if each element *g* of Γ can be written uniquely as g = bh for some $b \in B$ and $h \in \Xi$.

Definition 2

Let Γ be a group, let *B* be a subset of Γ , and let Ξ be a subgroup of Γ . A triple (Γ, B, Ξ) is called a gyrotriple if the following properties hold:

- *B* is a transversal to Ξ in Γ
- **2** *B* is a twisted subgroup of Γ
- **③** Ξ normalizes *B*, that is, $hBh^{-1} \subseteq B$ for all $h \in \Xi$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$Gyrogroup \rightarrow Group$

Let *G* be a gyrogroup. Then $\Sigma = \{L_a \circ \alpha : a \in G, \alpha \in Aut(G)\}$ forms a group under composition of maps with group law:

$$(L_a \circ \alpha) \circ (L_b \circ \beta) = L_{a \oplus \alpha(b)} \circ (\operatorname{gyr}[a, \alpha(b)] \circ \alpha \circ \beta)$$
(3)

for all $a, b \in G, \alpha, \beta \in Aut(G)$. Furthermore, $\hat{G} \subseteq \Sigma$ and Aut(G) is a subgroup of Σ .

Theorem 3 (T. S., 2017)

If *G* is a gyrogroup, then $(\Sigma, \hat{G}, Aut(G))$ is a gyrotriple.

Group \rightarrow Gyrogroup

Suppose that a subset *B* of a group Γ is a transversal to a subgroup Ξ of a group Γ . By definition, for all $a, b \in B$, there are unique elements $a \odot b \in B$ and $h(a, b) \in \Xi$ such that $ab = (a \odot b)h(a, b)$. In some case, \odot becomes a gyrogroup operation.

Theorem 4 (T. Foguel & A. Ungar, 2000 • T. S., 2017)

Let (Γ, B, Ξ) be a gyrotriple. Then *B* is a gyrogroup under the transversal operation. For all $a, b \in B$, the gyroautomorphism of *B* generated by *a* and *b* is conjugation by h(a, b).

In this case, the group identity of Γ acts as the gyrogroup identity of *B* and $\ominus b = b^{-1}$ for all $b \in B$.

• □ • • □ • • □ • • □ • • □ •

Involutive groups

A group Γ , together with an automorphism τ of Γ such that $\tau^2 = I_{\Gamma}$, is called an involutive group [3], denoted by (Γ, τ) . In this case, τ induces a *subset* $G(\Gamma)$ and a *subgroup* $A(\Gamma)$ of Γ given by

$$G(\Gamma) = \{ gg^{\dagger} \colon g \in \Gamma \} \text{ and } A(\Gamma) = \{ g \in \Gamma \colon \tau(g) = g \}.$$
(4)

Here, $g^{\dagger} = \tau(g)^{-1}$ and the map \dagger defines an involutive anti-automorphism of Γ .

Proposition 5

If (Γ, τ) is an involutive group, then $G(\Gamma)$ is a twisted subgroup of Γ and $A(\Gamma)$ normalizes $G(\Gamma)$.

[3] J. Lawson, Clifford algebras, Möbius transformations, Vahlen matrices, and B-loops, *Comment. Math. Univ. Carolin.* **51**(2010), no. 2, pp. 319–331

Conference on Recent Trends in Algebra

Construction of a gyrogroup

Construction of a gyrogroup I

A subset *B* of a group Γ is **uniquely 2-divisible** if for each element *a* of *B*, there is a unique element *b* of *B* such that $b^2 = a$. In this case, \sqrt{a} denotes the unique element of *B* such that $\sqrt{a}^2 = a$.

Theorem 6 (T. S., 2017)

Let (Γ, τ) be an involutive group. If $G(\Gamma)$ is uniquely 2-divisible, then $(\Gamma, G(\Gamma), A(\Gamma))$ is a gyrotriple. In this case, $G(\Gamma)$ forms a gyrogroup under the operation given by

$$a \oplus b = \sqrt{ab^2 a},\tag{5}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ

where the gyroautomorphisms of $G(\Gamma)$ are given by

gyr[*a*, *b*]*c* =
$$hch^{-1}$$
, $h = \sqrt{ab^2a}^{-1}ab$, (6)

for all $a, b, c \in G(\Gamma)$.

Concrete example—real matrices

Let $\operatorname{GL}_n(\mathbb{R})$ be the group of invertible $n \times n$ matrices with entries from \mathbb{R} . Then $\operatorname{GL}_n(\mathbb{R})$ can be made into an involutive group by defining

$$\tau(A) = (A^{\mathsf{t}})^{-1}, \qquad A \in \mathrm{GL}_n(\mathbb{R}).$$

Here, A^t is the transpose of *A*. Clearly, $A^{\dagger} = A^t$ for all $A \in GL_n(\mathbb{R})$. In this case,

 $G(\operatorname{GL}_{n}(\mathbb{R})) = \{A \in \operatorname{GL}_{n}(\mathbb{R}) : A \text{ is symmetric and positive definite} \},\$ $A(\operatorname{GL}_{n}(\mathbb{R})) = \{O \in \operatorname{GL}_{n}(\mathbb{R}) : O \text{ is orthogonal} \}.$

Since $G(GL_n(\mathbb{R}))$ is uniquely 2-divisible, it follows that $G(GL_n(\mathbb{R}))$ is a gyrogroup under the operation

$$A \oplus B = \sqrt{AB^2A}$$

and any gyroautomorphism is a congruence transformation, $A \mapsto O^{t}AO$, where *O* is an orthogonal matrix.

Conference on Recent Trends in Algebra

Concrete example—unital C*-algebra

Positive units in a unital C*-algebra

The set of positive units in a unital C^* -algebra is a gyrocommutative gyrogroup under the operation

$$x \oplus y = \sqrt{xy^2x}$$

and under the operation

$$x \oplus_H y = \sqrt{x} y \sqrt{x}.$$

In both cases, any gyroautomorphism is a congruence transformation, $x \mapsto uxu^*$, where *u* is a unitary element.

Commutator-inversion invariant groups

Recall that the *commutator* of *g* and *h* in a group Γ is denoted by [g, h] and is defined as $[g, h] = g^{-1}h^{-1}gh$. Denote by $Z(\Gamma)$ the center of Γ given by

 $Z(\Gamma) = \{z \in \Gamma \colon zg = gz \text{ for all } g \in \Gamma\}.$

Definition 7

A group Γ is commutator-inversion invariant if $[g, h] = [g^{-1}, h^{-1}]$ for all $g, h \in \Gamma$ and is central by a commutator-inversion invariant group if $\Gamma/Z(\Gamma)$ is commutator-inversion invariant.

Construction of a gyrogroup II

Theorem 8 (T. S., 2022)

Let Γ be a group. If $\Gamma/Z(\Gamma)$ is commutator-inversion invariant, then Γ can be made into a gyrogroup by defining

$$a \oplus b = aaba^{-1} \tag{7}$$

for all $a, b \in \Gamma$. In this case, the induced gyrogroup is denoted by Γ^{gyr} . The gyroautomorphism of Γ^{gyr} generated by *a* and *b* is conjugation by $[a^{-1}, b]$.

Characterization when a gyroautomorphism is trivial

Recall that a group Γ is said to be *nilpotent* if its upper central series reaches Γ at some step.

Theorem 9

Let Γ be a group central by a commutator-inversion invariant group. Then every gyroautomorphism of Γ^{gyr} is trivial if and only if Γ is nilpotent of class at most 2.

Characterization when induced gyrogroups are isomorphic

A group Γ is said to be 3-divisible if for each element $g \in \Gamma$, there is an element $h \in \Gamma$ for which $g = h^3$.

Theorem 10

Let Γ and Π be groups central by commutator-inversion invariant groups. If Γ is 3-divisible, then Γ and Π are isomorphic as groups if and only if Γ^{gyr} and Π^{gyr} are isomorphic as gyrogroups.

Characterization when induced gyrogroups are isomorphic—finite case

Theorem 11

Let Γ and Π be finite groups central by commutator-inversion invariant groups. If $|\Gamma|$ is not divisible by 3, then Γ and Π are isomorphic as groups if and only if Γ^{gyr} and Π^{gyr} are isomorphic as gyrogroups.

Some examples of groups of prime-power order

Theorem 12

If Γ is a group of order p^k , where p is a prime and $k \in \{0, 1, 2, 3\}$, then Γ^{gyr} exists and is degenerate.

Theorem 13

Let Γ be a group of order p^4 , where p is a prime. Then Γ^{gyr} exists, and in this case Γ^{gyr} is degenerate if and only if Γ is nilpotent of class at most 2.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Concrete examples

The following groups are central by commutator-inversion invariant groups and produce non-degenerate gyrogroups:

- the *dihedral group* of order 16, $D_{16} = \langle r, s : r^8 = s^2 = 1, rs = sr^{-1} \rangle$
- e the generalized quaternion group of order 16, $Q_{16} = \langle a, b : a^8 = 1, a^4 = b^2, bab^{-1} = a^{-1} \rangle$
- **(a)** the *semidihedral group* of order 16, $SD_{16} = \langle x, y : x^8 = y^2 = 1, yxy^{-1} = x^3 \rangle$

The three induced gyrogroups D_{16}^{gyr} , Q_{16}^{gyr} , and SD_{16}^{gyr} are pairwise non-isomorphic by Theorem 11.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Acknowledgments

I would like to thank Professor Sorasak Leeratanavalee for his kind invitation to participate in the Conference on Recent Trends in Algebra and Related Topics.

Thank you for your attention!