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Introduction

What is a gyrogroup?

Gyrogroup—group-like structure

Consisting of one set with one binary operation

Operation NOT associative, NOT a group, in general

Having associativity-correction maps—gyroautomorphisms

Having algebraic properties like groups

Being a generalization of groups

First introduced by Abraham A. Ungar
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Introduction

Gyrogroups—an axiom approach

Let G be a non-empty set and let ⊕ be a binary operation on G. Then
(G,⊕) is a gyrogroup if

1 ∃e ∈ G ∀a ∈ G, a⊕e = a = e⊕a

2 ∀a ∈ G∃b ∈ G, b⊕a = e = a⊕b

3 ∀a,b ∈ G ∃gyr[a,b],gyr[b,a] ∈ Aut(G,⊕) such that
Ï a⊕ (b⊕ c) = (a⊕b)⊕gyr[a,b]c (left gyroassociative law)
Ï (a⊕b)⊕ c = a⊕ (b⊕gyr[b,a]c) (right gyroassociative law)

4 ∀a,b ∈ G,
Ï gyr[a⊕b,b] = gyr[a,b] (left loop property)
Ï gyr[a,b⊕a] = gyr[a,b] (right loop property)
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Introduction

Gyrocommutative gyrogroups

A gyrogroup (G,⊕) that satisfies the commutative-like law,

a⊕b = gyr[a,b](b⊕a) (1)

for all a,b ∈ G, is called a gyrocommutative gyrogroup, analogous to abelian
groups.
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Introduction

Concrete example of a gyrogroup—Möbius addition

Set D= {z ∈C : |z| < 1}. Möbius addition [1], ⊕M , is given by

a⊕M b = a+b

1+ āb
(2)

for all a,b ∈D. Then (D,⊕M ) forms a gyrocommutative gyrogroup that is not
a group.

[1] A. Ungar, The holomorphic automorphism group of the complex disk, Aequationes
Mathmematicae 47 (1994)
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Connection between groups and gyrogroups

Groups and gyrogroups

Recall the gyroassociative law

a⊕ (b⊕ c) = (a⊕b)⊕gyr[a,b]c

(a⊕b)⊕ c = a⊕ (b⊕gyr[b,a]c)

Every group is a gyrogroup by defining gyr[a,b] to be the identity
automorphism.

Any gyrogroup with trivial gyroautomorphisms is a group.

A non-degenerate gyrogroup is a gyrogrop that has at least one
non-trivial gyroautomorphism.
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Connection between groups and gyrogroups

Groups and gyrogroups

GROUP GYROGROUP
group identity 1 gyrogroup identity e
inverse element a−1 inverse element ⊖a
the associative law the gyroassociative law
subgroup subgyrogroup
normal subgroup normal subgyrogroup
quotient group quotient gyrogroup
group homomorphism gyrogroup homomorphism
group isomorphism gyrogroup isomorphism
abelian group gyrocommutative gyrogroup

...
...

[2] T. S., Essays in Mathematics and Its Applications: In Honor of Vladimir Arnold, in:
Th.M. Rassias, P.M. Pardalos (Eds.), The Algebra of Gyrogroups: Cayley’s Theorem, Lagrange’s
Theorem, and Isomorphism Theorems, Springer, Cham, 2016, pp.369–437
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Connection between groups and gyrogroups

Relationship between a gyrogroup and its symmetric
group

Let G be a gyrogroup and let a ∈ G. The left gyrotranslation by a, denoted
by La and defined by La(x) = a⊕x,x ∈ G, is a permutation of G. Set

Ĝ = {La : a ∈ G}.

Here is a nice relationship between Ĝ and Sym(G).

Theorem 1
Viewing Sym(G) as the usual symmetric group, we have

1 Le, which is the identity map, is in Ĝ

2 X ∈ Ĝ implies X−1 ∈ Ĝ

3 X ,Y ∈ Ĝ implies X ◦Y ◦X ∈ Ĝ.

That is, Ĝ is a twisted subgroup, but not subgroup, of Sym(G).
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Construction of a gyrogroup from a group

Gyrotriples

A subset B of a group Γ is a twisted subgroup of Γ if (i) 1 ∈ B, 1 being the
identity of Γ; (ii) b ∈ B implies b−1 ∈ B; and (iii) a,b ∈ B implies aba ∈ B.

A subset B of a group Γ is a (left) transversal to a subgroup Ξ of Γ if each
element g of Γ can be written uniquely as g = bh for some b ∈ B and h ∈Ξ.

Definition 2
Let Γ be a group, let B be a subset of Γ, and let Ξ be a subgroup of Γ. A triple
(Γ,B,Ξ) is called a gyrotriple if the following properties hold:

1 B is a transversal to Ξ in Γ

2 B is a twisted subgroup of Γ

3 Ξ normalizes B, that is, hBh−1 ⊆ B for all h ∈Ξ.

Conference on Recent Trends in Algebra Construction of a gyrogroup T. Suksumran 10 / 24
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Construction of a gyrogroup from a group

Gyrogroup → Group

Let G be a gyrogroup. Then Σ= {La ◦α : a ∈ G,α ∈ Aut(G)} forms a group
under composition of maps with group law:

(La ◦α)◦ (Lb ◦β) = La⊕α(b) ◦ (gyr[a,α(b)]◦α◦β) (3)

for all a,b ∈ G,α,β ∈ Aut(G). Furthermore, Ĝ ⊆Σ and Aut(G) is a subgroup
of Σ.

Theorem 3 (T. S., 2017)

If G is a gyrogroup, then (Σ, Ĝ,Aut(G)) is a gyrotriple.
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Construction of a gyrogroup from a group

Group → Gyrogroup

Suppose that a subset B of a group Γ is a transversal to a subgroup Ξ of a
group Γ. By definition, for all a,b ∈ B, there are unique elements a⊙b ∈ B
and h(a,b) ∈Ξ such that ab = (a⊙b)h(a,b). In some case, ⊙ becomes a
gyrogroup operation.

Theorem 4 (T. Foguel & A. Ungar, 2000 • T. S., 2017)

Let (Γ,B,Ξ) be a gyrotriple. Then B is a gyrogroup under the transversal
operation. For all a,b ∈ B, the gyroautomorphism of B generated by a and b
is conjugation by h(a,b).

In this case, the group identity of Γ acts as the gyrogroup identity of B and
⊖b = b−1 for all b ∈ B.
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Construction of a gyrogroup from a group

Involutive groups

A group Γ, together with an automorphism τ of Γ such that τ2 = IΓ, is
called an involutive group [3], denoted by (Γ,τ). In this case, τ induces a
subset G(Γ) and a subgroup A(Γ) of Γ given by

G(Γ) = {gg† : g ∈ Γ} and A(Γ) = {g ∈ Γ : τ(g) = g}. (4)

Here, g† = τ(g)−1 and the map † defines an involutive anti-automorphism
of Γ.

Proposition 5

If (Γ,τ) is an involutive group, then G(Γ) is a twisted subgroup of Γ and A(Γ)
normalizes G(Γ).

[3] J. Lawson, Clifford algebras, Möbius transformations, Vahlen matrices, and B-loops,
Comment. Math. Univ. Carolin. 51(2010), no. 2, pp. 319–331
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Construction of a gyrogroup from a group

Construction of a gyrogroup I

A subset B of a group Γ is uniquely 2-divisible if for each element a of B,
there is a unique element b of B such that b2 = a. In this case,

p
a denotes

the unique element of B such that
p

a2 = a.

Theorem 6 (T. S., 2017)
Let (Γ,τ) be an involutive group. If G(Γ) is uniquely 2-divisible, then
(Γ,G(Γ),A(Γ)) is a gyrotriple. In this case, G(Γ) forms a gyrogroup under the
operation given by

a⊕b =
√

ab2a, (5)

where the gyroautomorphisms of G(Γ) are given by

gyr[a,b]c = hch−1, h =
√

ab2a
−1

ab, (6)

for all a,b,c ∈ G(Γ).
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Construction of a gyrogroup from a group

Concrete example—real matrices

Let GLn(R) be the group of invertible n×n matrices with entries from R.
Then GLn(R) can be made into an involutive group by defining

τ(A) = (At)−1, A ∈ GLn(R).

Here, At is the transpose of A. Clearly, A† = At for all A ∈ GLn(R). In this case,

G(GLn(R)) = {A ∈ GLn(R) : A is symmetric and positive definite},

A(GLn(R)) = {O ∈ GLn(R) : O is orthogonal}.

Since G(GLn(R)) is uniquely 2-divisible, it follows that G(GLn(R)) is a
gyrogroup under the operation

A⊕B =
√

AB2A

and any gyroautomorphism is a congruence transformation, A 7→ OtAO,
where O is an orthogonal matrix.
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Construction of a gyrogroup from a group

Concrete example—unital C∗-algebra

Positive units in a unital C∗-algebra

The set of positive units in a unital C∗-algebra is a gyrocommutative
gyrogroup under the operation

x⊕y =
√

xy2x

and under the operation
x⊕H y =p

xy
p

x.

In both cases, any gyroautomorphism is a congruence transformation,
x 7→ uxu∗, where u is a unitary element.
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Construction of a gyrogroup from a group

Commutator-inversion invariant groups

Recall that the commutator of g and h in a group Γ is denoted by [g,h] and
is defined as [g,h] = g−1h−1gh. Denote by Z(Γ) the center of Γ given by

Z(Γ) = {z ∈ Γ : zg = gz for all g ∈ Γ}.

Definition 7

A group Γ is commutator-inversion invariant if [g,h] = [g−1,h−1] for all
g,h ∈ Γ and is central by a commutator-inversion invariant group if Γ/Z(Γ)
is commutator-inversion invariant.
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Construction of a gyrogroup from a group

Construction of a gyrogroup II

Theorem 8 (T. S., 2022)
Let Γ be a group. If Γ/Z(Γ) is commutator-inversion invariant, then Γ can
be made into a gyrogroup by defining

a⊕b = aaba−1 (7)

for all a,b ∈ Γ. In this case, the induced gyrogroup is denoted by Γgyr. The
gyroautomorphism of Γgyr generated by a and b is conjugation by [a−1,b].
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Construction of a gyrogroup from a group

Characterization when a gyroautomorphism is trivial

Recall that a group Γ is said to be nilpotent if its upper central series
reaches Γ at some step.

Theorem 9
Let Γ be a group central by a commutator-inversion invariant group. Then
every gyroautomorphism of Γgyr is trivial if and only if Γ is nilpotent of class
at most 2.
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Construction of a gyrogroup from a group

Characterization when induced gyrogroups are
isomorphic

A group Γ is said to be 3-divisible if for each element g ∈ Γ, there is an
element h ∈ Γ for which g = h3.

Theorem 10
Let Γ and Π be groups central by commutator-inversion invariant groups. If
Γ is 3-divisible, then Γ and Π are isomorphic as groups if and only if Γgyr

and Πgyr are isomorphic as gyrogroups.
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Construction of a gyrogroup from a group

Characterization when induced gyrogroups are
isomorphic—finite case

Theorem 11
Let Γ and Π be finite groups central by commutator-inversion invariant
groups. If |Γ| is not divisible by 3, then Γ and Π are isomorphic as groups if
and only if Γgyr and Πgyr are isomorphic as gyrogroups.
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Construction of a gyrogroup from a group

Some examples of groups of prime-power order

Theorem 12

If Γ is a group of order pk, where p is a prime and k ∈ {0,1,2,3}, then Γgyr

exists and is degenerate.

Theorem 13

Let Γ be a group of order p4, where p is a prime. Then Γgyr exists, and in this
case Γgyr is degenerate if and only if Γ is nilpotent of class at most 2.
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Construction of a gyrogroup from a group

Concrete examples

The following groups are central by commutator-inversion invariant
groups and produce non-degenerate gyrogroups:

1 the dihedral group of order 16, D16 = 〈r,s : r8 = s2 = 1,rs = sr−1〉
2 the generalized quaternion group of order 16,

Q16 = 〈a,b : a8 = 1,a4 = b2,bab−1 = a−1〉
3 the semidihedral group of order 16, SD16 = 〈x,y : x8 = y2 = 1,yxy−1 = x3〉

The three induced gyrogroups Dgyr
16 ,Qgyr

16 , and SDgyr
16 are pairwise

non-isomorphic by Theorem 11.
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