Orthogonal decomposition for a modular Lie algebra \mathfrak{sl}_n

Songpon Sriwongsa

King Mongkut's University of Technology Thonburi

Conference on Recent Trends in Algebra and Related Topics 2023

January 19th, 2023

Orthogonal decomposition problem of Lie algebras over $\mathbb C$ has many applications and relations to other areas of Mathematics and Sciences.

- We define a suitable type of orthogonal decomposition of a modular Lie algebra and construct it for Lie algebra sl_n under some sufficient conditions.
- A necessary condition is also discussed of this type of Lie algebra.
- We analyze the problem over finite fields by using some important facts of modular Lie algebras over fields of positive characteristic.

References I

- A. Bondal, I. Zhdanovskiy, Orthogonal pairs for Lie algebra *sl*(6), Preprint of IPMU, (2014) IPMU14-0296
- A. Bondal, I. Zhdanovskiy, Orthogonal pairs and mutually unbiased bases, J. Math. Sci. (N.Y.), 216 No. 1 (2016) 23–40.
- P. O. Boykin, M. Sitharam, P. H. Tiep, P. Wocjan, Mutually unbiased bases and orthogonal decompositions of Lie algebras, *Quantum Inf. Comput.*, 7 (2007) 371–382.
- D. L. Donoho, X. Huo, Uncertainty principles and ideal atomic decomposition, *IEEE Trans. on Information Theory.*, 47 No. 7 (2001) 2845–2862.
- A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, Orthogonal decompositions of simple Lie algebras (type *A_n*), *Trudy Mat. Inst. Steklov.*, 158 (1981) 105–120.
- A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, On the uniqueness of orthogonal decompositions of Lie algebras of type A_n and C_n , *Mat. Issled.*, 74 (1983) 80–105.
 - B. R. McDonald, *Finite Rings with Identity*, Marcel Dekker, New York, 1974.

Image: A matrix and a matrix

G. B. Seligman, Modular Lie Algebras, Springer-Verlag, New York, 1967.

J. Thompson, A conjugacy theorem for E_8 , J. Algebra, 38 No. 2 (1976) 525–530.

Let *R* be a commutative ring with 1. A **Lie algebra** over *R* is an *R*-module *L* equipped with a bilinear form $[\cdot, \cdot]$ (called Lie bracket) satisfying

$$I[x,x] = 0 \text{ for all } x \in L.$$

2
$$[[x,y],z] + [[y,z],x] + [[z,x],y] = 0.$$

Let *R* be a commutative ring with 1. A **Lie algebra** over *R* is an *R*-module *L* equipped with a bilinear form $[\cdot, \cdot]$ (called Lie bracket) satisfying

$$I[x,x] = 0 \text{ for all } x \in L.$$

3
$$[[x,y],z] + [[y,z],x] + [[z,x],y] = 0.$$

Example

 $M_n(R) = \{ all \ n \times n \text{ matrices over } R \}$ is a Lie algebra with [x, y] = xy - yx.

Define $[L, L] := \{ \sum [x_i, y_i] : x_i, y_i \in L \}.$

< 67 ▶

э

Define $[L, L] := \{ \sum [x_i, y_i] : x_i, y_i \in L \}.$ Define $L^0 = L, L^1 = [L, L], L^2 = [L, L^1], \dots, L^i = [L, L^{i-1}].$

< 67 ▶

Define
$$[L, L] := \{ \sum [x_i, y_i] : x_i, y_i \in L \}.$$

Define $L^0 = L, L^1 = [L, L], L^2 = [L, L^1], \dots, L^i = [L, L^{i-1}].$

L is called **nilpotent** if $L^n = 0$ for some *n*.

Define $[L, L] := \{ \sum [x_i, y_i] : x_i, y_i \in L \}.$ Define $L^0 = L, L^1 = [L, L], L^2 = [L, L^1], \dots, L^i = [L, L^{i-1}].$

L is called **nilpotent** if $L^n = 0$ for some *n*.

Let *H* be a subalgebra of *L*. The set $N_L(H) := \{x \in L : [x, H] \subset H\}$ is called the **normalizer** of *H* in *L*.

Define $[L, L] := \{ \sum [x_i, y_i] : x_i, y_i \in L \}.$ Define $L^0 = L, L^1 = [L, L], L^2 = [L, L^1], \dots, L^i = [L, L^{i-1}].$

L is called **nilpotent** if $L^n = 0$ for some *n*.

Let *H* be a subalgebra of *L*. The set $N_L(H) := \{x \in L : [x, H] \subset H\}$ is called the **normalizer** of *H* in *L*.

Definition

A subalgebra H of L is a *Cartan subalgebra* if it is a nilpotent subalgebra which is its own normalizer.

Definition

A subalgebra H of L is a *Cartan subalgebra* if it is a nilpotent subalgebra which is its own normalizer.

Definition

The Killing form $K(A, B) := Tr(adA \cdot adB)$ for $A, B \in L$ where $adA : X \mapsto [A, X]$.

 $Tr(\cdot)$ is the trace of the matrix.

Special Linear Lie algebras: $\mathfrak{sl}_n(R) = \{X \in M_n(R) : \operatorname{Tr}(X) = 0\}.$

- 一司

Special Linear Lie algebras: $\mathfrak{sl}_n(R) = \{X \in M_n(R) : \operatorname{Tr}(X) = 0\}.$

Type A: $K(A, B) = 2n \operatorname{Tr}(AB)$ for $A, B \in \mathfrak{sl}_n(R)$.

Definition

Let \mathfrak{L} be a Lie algebra over \mathbb{C} . An *orthogonal decomposition* (OD) of \mathfrak{L} is the decomposition (as a vector space) of \mathfrak{L} into a direct sum of Cartan subalgebras which are pairwise orthogonal with respect to the Killing form.

• In 1976, J.G.Thompson used OD of E_8 for the construction of a special finite simple group.

Figure : J. G. Thompson

イロト イポト イヨト イヨト 二日

 In 1981, Kostrikin and his collaborators developed the theory of such decompositions of simple Lie algebras of types A, B, C, D over C.

Figure : Aleksei Ivanovich Kostrikin (1929-2000)

• The OD problem for $\mathfrak{sl}_n(\mathbb{C})$ has applications in Quantum information theory, e.g., mutually unbiased bases.

- The OD problem for sl_n(C) has applications in Quantum information theory, e.g., mutually unbiased bases.
- MUBs have applications in physics and engineering, such as in quantum information and signal processing. The construction of mutually unbiased bases has a strong combinatorial and algebraic flavor.

Let Φ_1 and Φ_2 be two orthonormal bases in \mathbb{R}^n (or \mathbb{C}^n).

∃ ▶ ∢

MUBs

Let Φ_1 and Φ_2 be two orthonormal bases in \mathbb{R}^n (or \mathbb{C}^n). Let

$$M = M(\Phi_1, \Phi_2) := \sup\{| < \Phi_1, \Phi_2 > | : \phi_i \in \Phi_i, i = 1, 2\},\$$

3

MUBs

Let Φ_1 and Φ_2 be two orthonormal bases in \mathbb{R}^n (or \mathbb{C}^n). Let

$$M = M(\Phi_1, \Phi_2) := \sup\{| < \Phi_1, \Phi_2 > | : \phi_i \in \Phi_i, i = 1, 2\},\$$

and let $A = (\Phi_1, \Phi_2)$ be the $n \times (2n)$ matrix with the columns given by the Φ_i .

Let Φ_1 and Φ_2 be two orthonormal bases in \mathbb{R}^n (or \mathbb{C}^n). Let

$$M = M(\Phi_1, \Phi_2) := \sup\{| < \Phi_1, \Phi_2 > | : \phi_i \in \Phi_i, i = 1, 2\},\$$

and let $A = (\Phi_1, \Phi_2)$ be the $n \times (2n)$ matrix with the columns given by the Φ_i .

Consider the system of linear equations

$$AX = B, X = (x_1, \ldots, x_{2n})^t, B = (b_1, \ldots, b_n)^t.$$

Let Φ_1 and Φ_2 be two orthonormal bases in \mathbb{R}^n (or \mathbb{C}^n). Let

$$M = M(\Phi_1, \Phi_2) := \sup\{| < \Phi_1, \Phi_2 > | : \phi_i \in \Phi_i, i = 1, 2\},\$$

and let $A = (\Phi_1, \Phi_2)$ be the $n \times (2n)$ matrix with the columns given by the Φ_i .

Consider the system of linear equations

$$AX = B, X = (x_1, \ldots, x_{2n})^t, B = (b_1, \ldots, b_n)^t.$$

Since rank(A) = rank(A|B), the system has infinitely many solutions.

MUBs

Example

The system of equations:

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

The general solutions of this system is

$$\begin{aligned} x_1 &= 1 - x_3 - x_4, \\ x_2 &= -x_3 + x_4, \end{aligned}$$

where x_3 and x_4 are free variables.

MUBs

Example

The system of equations:

$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

The general solutions of this system is

$$\begin{aligned} x_1 &= 1 - x_3 - x_4, \\ x_2 &= -x_3 + x_4, \end{aligned}$$

where x_3 and x_4 are free variables.

Remark: if we impose (ex of condition) the condition $||X||_0 =$ number of nonzero $x_i = 1$, then the solution is unique.

Songpon Sriwongsa (KMUTT)

Orthogonal decomposition

Theorem

(Donoho and Huo, 2001) Suppose that $\alpha \in \mathbb{R}^{2n}$ satisfies

$$Alpha = B, \; ext{and} \; ||lpha||_0 < rac{1}{2}(1+M^{-1}),$$

where $B \in \mathbb{R}^n$. Then α is the unique solution of the ℓ_1 -optimization problem

min
$$||\alpha||_1$$
 such that $A\alpha = B$.

 $(||X||_1 = \sum |x_i|).$

Theorem

(Donoho and Huo, 2001) Suppose that $\alpha \in \mathbb{R}^{2n}$ satisfies

$$Alpha = B, \; ext{and} \; ||lpha||_0 < rac{1}{2}(1+M^{-1}),$$

where $B \in \mathbb{R}^n$. Then α is the unique solution of the ℓ_1 -optimization problem

min
$$||\alpha||_1$$
 such that $A\alpha = B$.

 $(||X||_1 = \sum |x_i|).$

Note that the smaller the $M = M(\Phi_1, \Phi_2)$, the wider range of vectors α we can recover. How small can M be?

- 4 3 6 4 3 6

It can be proved that $M = M(\Phi_1, \Phi_2) \ge \frac{1}{\sqrt{n}}$.

Definition

Two orthonormal bases Φ_1 and Φ_2 are *mutually unbiased* if $M = M(\Phi_1, \Phi_2) = \frac{1}{\sqrt{n}}$.

The *-operation on $\mathfrak{sl}_n(\mathbb{C})$ is defined by $A* = \overline{A}^t$. The following theorem is due to Boykin et al. (2007)

Theorem

- Any collection of k MUB in \mathbb{C}^n gives rise to k orthogonal Cartan subalgebras of $\mathfrak{sl}_n(\mathbb{C})$ with respect to the Killing form. Thus, if there exists a collection of n + 1 MUB in \mathbb{C}^n , then there is an OD in $\mathfrak{sl}_n(\mathbb{C})$.
- Conversely, any OD of $\mathfrak{sl}_n(\mathbb{C})$ into a direct sum of Cartan subalgebras which are stable with respect to the *-operation gives rise to a collection of n + 1 MUB in $\mathfrak{sl}_n(\mathbb{C})$.

• The following theorem is due to Kostrikin et al. (1981).

Theorem

For $n = p^m$, where p is a prime integer and m is a positive integer, $\mathfrak{sl}_n(\mathbb{C})$ has an OD

$$\mathfrak{sl}_n(\mathbb{C}) = H_0 \oplus H_1 \oplus \cdots \oplus H_n$$

where H_i's are all Cartan subalgebras.

 $\mathfrak{sl}_n(\mathbb{C})$ has an OD if and only if n is a prime power integer.

 $\mathfrak{sl}_n(\mathbb{C})$ has an OD if and only if n is a prime power integer.

The name is due to a play on words found in Zahoder's translation of Milne's famous childrens book Winnie-the-Pooh into Russian. Zahoder's play on words can be interpreted as the sequence of Cartan types A_5 -corresponding to the smallest open case \mathfrak{sl}_6 -then A_6 , A_7 and A_8 .

 $\mathfrak{sl}_n(\mathbb{C})$ has an OD if and only if n is a prime power integer.

The name is due to a play on words found in Zahoder's translation of Milne's famous childrens book Winnie-the-Pooh into Russian. Zahoder's play on words can be interpreted as the sequence of Cartan types A_5 -corresponding to the smallest open case \mathfrak{sl}_6 -then A_6 , A_7 and A_8 .

• The only if part is still open, even n = 6.

 $\mathfrak{sl}_n(\mathbb{C})$ has an OD if and only if n is a prime power integer.

The name is due to a play on words found in Zahoder's translation of Milne's famous childrens book Winnie-the-Pooh into Russian. Zahoder's play on words can be interpreted as the sequence of Cartan types A_5 -corresponding to the smallest open case \mathfrak{sl}_6 -then A_6 , A_7 and A_8 .

- The only if part is still open, even n = 6.
- For n = 6, Bondal et. al. proved the existence of four collection of pairwise orthogonal Cartan subalgebras of sl₆(ℂ) [1, 2].

Goal: To generalize OD problem to ring cases.

Goal: To generalize OD problem to ring cases.

Let \mathfrak{L} be a Lie algebra over a field of prime characteristic.

 \bullet Unlike Lie algebras over $\mathbb C,$ not all Cartan subalgebras of $\mathfrak L$ are abelian.

- \bullet Unlike Lie algebras over $\mathbb{C},$ not all Cartan subalgebras of $\mathfrak L$ are abelian.
- We consider the orthogonal decomposition of \mathfrak{L} into abelian Cartan subalgebras (abbreviated ODAC). An ODAC of \mathfrak{L} is

$$\mathfrak{L}=H_0\oplus H_1\oplus\ldots\oplus H_k$$

where the H_i 's are pairwise orthogonal abelian Cartan subalgebra of \mathfrak{L} .

Let \mathbb{F} be a field with characteristic $\neq 2, 3$.

Let \mathbb{F} be a field with characteristic $\neq 2, 3$. A Lie algebra \mathfrak{L} over \mathbb{F} is called *classical* if :

(i) the center of \mathfrak{L} is zero;

(ii)
$$[\mathfrak{L},\mathfrak{L}] = \mathfrak{L};$$

(iii) \mathfrak{L} has an abelian Cartan subalgebra H, relative to which:

(a)
$$\mathfrak{L} = \oplus \mathfrak{L}_{\alpha}$$
, where $[x, h] = \alpha(h)x$ for all $x \in \mathfrak{L}_{\alpha}, h \in H$;

- (b) if $\alpha \neq 0$ is a root, $[\mathfrak{L}_{\alpha}, \mathfrak{L}_{-\alpha}]$ is one-dimensional;
- (c) if α and β are roots, and if $\beta \neq 0$, then not all $\alpha + k\beta$ are roots, where $1 \leq k \leq p 1$.

We call this H a **classical** Cartan subalgebra.

• Let's consider an OD whose components are classical Cartan subalgebras. We call a **classical OD** and denote by (COD).

- Let's consider an OD whose components are classical Cartan subalgebras. We call a **classical OD** and denote by (COD).
- All classical Cartan subalgebras are conjugate.

Example

If $2\nmid {\rm char}(\mathbb{F})$ and -1 is a square in $\mathbb{F},$ then $\mathfrak{sl}_2(\mathbb{F})$ is the Lie algebra with a COD

$$\mathfrak{sl}_2(\mathbb{F}) = \left\langle egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}
ight
angle_{\mathbb{F}} \oplus \left\langle egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}
ight
angle_{\mathbb{F}} \oplus \left\langle egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}
ight
angle_{\mathbb{F}}.$$

- 一司

æ

 In general cases of sl_n(F), we would like to find sufficient conditions to construct a COD.

э

Let \mathbb{F} be a field of positive characteristic and let $n = p^m$ be a prime power. Assume that $char(\mathbb{F}) \neq 2,3$ and p. If

• p = 2 and -1 is a square in \mathbb{F} or

2 p > 2 and \mathbb{F} contains a primitive pth root of unity,

then $\mathfrak{sl}_n(\mathbb{F})$ has a COD.

Let \mathbb{F} be a field of positive characteristic and let $n = p^m$ be a prime power. Assume that $char(\mathbb{F}) \neq 2,3$ and p. If

1 p = 2 and -1 is a square in \mathbb{F} or

2 p > 2 and \mathbb{F} contains a primitive pth root of unity, then $\mathfrak{sl}_n(\mathbb{F})$ has a COD.

Note that the sufficient conditions 1 and 2 provide the existence of a primitive *p*th root of unity $u \in \mathbb{F}$.

Corollary

Let \mathbb{F} be an algebraically closed field of positive characteristic and let $n = p^m$ be a prime power. If $char(\mathbb{F}) \neq 2, 3$ and p, then $\mathfrak{sl}_n(\mathbb{F})$ has a COD.

.⊒ . ►

For the finite field \mathbb{F}_q , it is known that -1 is a square if and only if $q \equiv 1 \pmod{4}$ and, by Cauchy theorem of a finite group, \mathbb{F}_q has a primitive *p*th root of unity if and only if $p \mid (q-1)$. Thus, we have:

For the finite field \mathbb{F}_q , it is known that -1 is a square if and only if $q \equiv 1 \pmod{4}$ and, by Cauchy theorem of a finite group, \mathbb{F}_q has a primitive *p*th root of unity if and only if $p \mid (q-1)$. Thus, we have:

Corollary

Let \mathbb{F}_q be the finite field of q elements and let $n = p^m$ be a prime power. Assume that $char(\mathbb{F}_q) \neq 2,3$ and p. If

•
$$p = 2$$
 and $q \equiv 1 \pmod{4}$, or

2
$$p > 2$$
 and $p \mid (q - 1)$,

then $\mathfrak{sl}_n(\mathbb{F}_q)$ has a COD.

The following discussion is about the characterization of fields for COD of \mathfrak{sl}_n , n = 2, 3.

- 一司

э

The following discussion is about the characterization of fields for COD of \mathfrak{sl}_n , n = 2, 3.

Let H_0 be the classical Cartan subalgebra of $\mathfrak{sl}_n(\mathbb{F})$ consisting of the diagonal matrices.

Lemma

Every classical Cartan subalgebra orthogonal to H_0 has a basis of the form indicated below.

(1) If n = 2, then

$$H = \left\langle \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix} \right\rangle_{\mathbb{F}}$$

for some $a \in \mathbb{F} \setminus \{0\}$. (2) If n = 3, then

$$H = \left\langle \left(\begin{matrix} 0 & 1 & 0 \\ 0 & 0 & a \\ ab & 0 & 0 \end{matrix} \right), \left(\begin{matrix} 0 & 0 & 1 \\ ab & 0 & 0 \\ 0 & b & 0 \end{matrix} \right) \right\rangle_{\mathbb{F}}$$

for some $a, b \in \mathbb{F} \setminus \{0\}$.

3

- ∢ ≣ →

Let \mathbb{F} be a any field such that $char(\mathbb{F}) > 3$. Then $\mathfrak{sl}_2(\mathbb{F})$ has a unique (up to conjugacy) COD if and only if \mathbb{F} contains a primitive fourth root of unity.

Let \mathbb{F} be a any field such that $char(\mathbb{F}) > 3$. Then $\mathfrak{sl}_2(\mathbb{F})$ has a unique (up to conjugacy) COD if and only if \mathbb{F} contains a primitive fourth root of unity.

Corollary

Let \mathbb{F}_q be the finite field of $q = p^m$ elements with p > 3. Then $\mathfrak{sl}_2(\mathbb{F}_q)$ has a unique (up to conjugacy) COD if and only if $q \equiv 1 \pmod{4}$.

Let \mathbb{F} be a any field such that $char(\mathbb{F}) > 3$. Then $\mathfrak{sl}_2(\mathbb{F})$ has a unique (up to conjugacy) COD if and only if \mathbb{F} contains a primitive fourth root of unity.

Corollary

Let \mathbb{F}_q be the finite field of $q = p^m$ elements with p > 3. Then $\mathfrak{sl}_2(\mathbb{F}_q)$ has a unique (up to conjugacy) COD if and only if $q \equiv 1 \pmod{4}$.

Remark: If $q \equiv 3 \pmod{4}$, then $\mathfrak{sl}_2(\mathbb{F}_q)$ has only two classical orthogonal components which are $\left\langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle_{\mathbb{F}_q}$ and $\left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle_{\mathbb{F}_q}$.

イロト 不得下 イヨト イヨト 二日

Let \mathbb{F} be a field such that $char(\mathbb{F}) > 3$. Then $\mathfrak{sl}_3(\mathbb{F})$ has a COD if and only if \mathbb{F} contains a primitive cube root of unity.

Let \mathbb{F} be a field such that $char(\mathbb{F}) > 3$. Then $\mathfrak{sl}_3(\mathbb{F})$ has a COD if and only if \mathbb{F} contains a primitive cube root of unity.

Corollary

Let \mathbb{F}_q be the finite field of $q = p^m$ elements with p > 3. Then $\mathfrak{sl}_3(\mathbb{F}_q)$ has a COD if and only if $3 \mid (q-1)$.

Let \mathbb{F} be a field such that $char(\mathbb{F}) > 3$. Then $\mathfrak{sl}_3(\mathbb{F})$ has a COD if and only if \mathbb{F} contains a primitive cube root of unity.

Corollary

Let \mathbb{F}_q be the finite field of $q = p^m$ elements with p > 3. Then $\mathfrak{sl}_3(\mathbb{F}_q)$ has a COD if and only if $3 \mid (q-1)$.

Remark: If $3 \nmid (q-1)$, then lack of primitive cube root of unity implies that $\mathfrak{sl}_3(\mathbb{F}_q)$ does not have an orthogonal pair of classical Cartan subalgebras.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

A finite commutative ring case

• Let *u* be a primitive cube root of unity and let

$$D = egin{pmatrix} 1 & 0 & 0 \ 0 & u & 0 \ 0 & 0 & u^2 \end{pmatrix} ext{ and } P = egin{pmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix},$$

then each matrix prescribed in the previous page is of the form D^aP^b for some $a, b \in \{0, 1, 2\}$.

• Let *u* be a primitive cube root of unity and let

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u^2 \end{pmatrix} \text{ and } P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

then each matrix prescribed in the previous page is of the form D^aP^b for some $a, b \in \{0, 1, 2\}$.

 An ODAC of sl_n(R) can be constructed under assumptions similar to the n = 3 case using the n × n version of matrices D and P.

Theorem (S. and Yi Ming Zou 2020)

Let R be a finite commutative ring with 1. For a prime power $n = p^m$, if there exists a primitive pth root of unity $u \in R^{\times}$ such that $u - 1 \in R^{\times}$, then $\mathfrak{sl}_n(R)$ has an ODAC. • If R is local, i.e. it is has the unique maximal ideal, then we have a sufficient condition for $\mathfrak{sl}_n(R)$ to satisfy the hypothesis of Main theorem. Then $\mathfrak{sl}_n(R)$ admits an ODAC in the next theorem.

• If R is local, i.e. it is has the unique maximal ideal, then we have a sufficient condition for $\mathfrak{sl}_n(R)$ to satisfy the hypothesis of Main theorem. Then $\mathfrak{sl}_n(R)$ admits an ODAC in the next theorem.

Theorem (S. and Yi Ming Zou 2020)

Let R be a finite local ring with the maximal ideal M and the residue field k = R/M. For a prime power $n = p^m$, if $p||k^{\times}|$, then $\mathfrak{sl}_n(R)$ has an ODAC.

• If R is local, i.e. it is has the unique maximal ideal, then we have a sufficient condition for $\mathfrak{sl}_n(R)$ to satisfy the hypothesis of Main theorem. Then $\mathfrak{sl}_n(R)$ admits an ODAC in the next theorem.

Theorem (S. and Yi Ming Zou 2020)

Let R be a finite local ring with the maximal ideal M and the residue field k = R/M. For a prime power $n = p^m$, if $p||k^{\times}|$, then $\mathfrak{sl}_n(R)$ has an ODAC.

• The proof use the fact that $R^{\times} \cong (1 + M) \times k^{\times}$ and that every element of M is nilpotent.

• Since a finite field \mathbb{F}_q is a finite local ring, we have an immediate corollary.

Corollary (S. and Yi Ming Zou 2020)

Let q be a prime power and \mathbb{F}_q a finite field of q elements. For a prime power $n = p^m$, if p|(q-1), then $\mathfrak{sl}_n(\mathbb{F}_q)$ has an ODAC.

• A finite commutative ring *R* with identity can be decomposed into a finite direct product of finite local rings.

Theorem (S. and Yi Ming Zou 2020)

Let $R = R_1 \times R_2 \times \cdots \times R_t$ be a finite direct product of finite local rings and let k_i be the residue field of R_i for all $i \in \{1, 2, ..., t\}$. For a prime power $n = p^m$, if $p||k_i^{\times}|$ for all $i \in \{1, 2, ..., t\}$, then $\mathfrak{sl}_n(R)$ has an ODAC. • A finite commutative ring *R* with identity can be decomposed into a finite direct product of finite local rings.

Theorem (S. and Yi Ming Zou 2020)

Let $R = R_1 \times R_2 \times \cdots \times R_t$ be a finite direct product of finite local rings and let k_i be the residue field of R_i for all $i \in \{1, 2, ..., t\}$. For a prime power $n = p^m$, if $p||k_i^{\times}|$ for all $i \in \{1, 2, ..., t\}$, then $\mathfrak{sl}_n(R)$ has an ODAC.

• The proof use the fact $R^{\times} \cong R_1^{\times} \times R_2^{\times} \times \ldots \times R_t^{\times}$.

Thank you

Image: A matrix