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Semirings

Semirings (First notion in 1934)
H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, 
Bulletin of the American Mathematical Society, 40, 1934, 914-920.

A semiring is an algebraic structure 𝑆, +,⋅ such that (𝑆, +)
and 𝑆,⋅ are semigroups and 

𝑎 ⋅ 𝑏 + 𝑐 = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐,
𝑎 + 𝑏 ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐

for all 𝑎, 𝑏, 𝑐 ∈ 𝑆.

Example 1. (ℕ,+,⋅) and (ℕ,max,min) are semirings.

2. The structure 𝑆,+,⋅ such that (𝑆, +) and 𝑆,⋅ are  left 
zero and right zero semigroups, respectively is a semiring.



Introduction

Let (S,+,.) be a semiring.

• A semiring (S,+,.) is called additively commutative if (S,+) is commutative.

• An element 𝟎 ∈ 𝑺 is called an additive zero if 𝟎 + 𝒙 = 𝒙 = 𝒙 + 𝟎 for all 𝒙 ∈ 𝑺.

• An element 𝟎 ∈ 𝑺 is called a multiplicative zero if 𝟎𝒙 = 𝟎 = 𝒙𝟎 for all 𝒙 ∈ 𝑺.

• If 𝟎 ∈ 𝑺 is both an additive zero and a multiplicative zero the it is called an absorbing 
zero (or a zero element).



Introduction
Note: additive zero and  multiplicative zero may not coincide.

Example: [M. R . & A. Adhikari; 2014] Consider the semiring (ℕ𝟎, +,⋅) where ℕ𝟎 is the 
set of all nonnegative integers, ⋅ is the usual multiplication and + is defined by

𝒂 + 𝒃 = ቊ𝐥𝐜𝐦 𝒂,𝒃 , 𝒂 ≠ 𝟎 𝐚𝐧𝐝 𝒃 ≠ 𝟎
𝟎 , 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

Now, the additive zero is 1 and the multiplicative zero is 0.



Semirings and weighted automata
Finite Automata (FA): 𝓐 = (𝑸,𝑻, 𝑰, 𝑭)

𝑸 − finite set of states
𝑻 ⊆ 𝑸 × 𝑨 × 𝑸 - set of transitions
𝑰, 𝑭 ⊆ 𝑸 – sets of initial resp. final states
--------------------
A – an alphabet (a set of letters)
𝒘 = 𝒂𝟏⋯𝒂𝒏 ∈ 𝑨∗ is accepted/recognized by 𝓐⇔
∃𝒕𝟏,⋯ , 𝒕𝒏 ∈ 𝑻, 𝒕𝒊 = 𝒒𝒊−𝟏, 𝒂𝟏, 𝒒𝒊 , 𝒒𝟎 ∈ 𝑰 𝐚𝐧𝐝 𝒒𝒏 ∈ 𝑭

𝑳 𝓐 = {𝒘 ∈ 𝑨∗ ∣ 𝓐 𝐚𝐜𝐜𝐞𝐩𝐭𝐬 𝒘}

e.g. 𝓐

𝑨 = 𝒂, 𝒃
𝑸 = 𝒓, 𝒔, 𝒕
𝑰 = 𝒓
𝑭 = {𝒕}

𝑳 𝓐 = {𝒘 ∈ 𝑨∗ ∣ 𝒘 𝐞𝐧𝐝𝐬 𝐰𝐢𝐭𝐡 𝒂𝒃}

M. Droste, W. Kuich, H. Vogler (eds.), Handbook of Weighted Automata, Monographs in 
Theoretical Computer Science. An EATCS Series, Springer-Verlag Berlin Heidelberg 2009

Weighted Finite Automata (WFA): 𝓐 = (𝑸,𝐰𝐭, 𝐢𝐧, 𝐨𝐮𝐭)

S − semiring,  𝑨 − alphabet

𝑸− finite set of states

𝐰𝐭:𝑸 × 𝑨 × 𝑸 → 𝑺 – weight function

𝐢𝐧, 𝐨𝐮𝐭: 𝑸 → 𝑺 determine the weight/cost for entering
resp., leaving 𝓐 in state q

Path:    𝑷 = 𝒒𝟎 → 𝒒𝟏 → ⋯ → 𝒒𝒏−𝟏 → 𝒒𝒏

𝐰𝐞𝐢𝐠𝐡𝐭 𝑷 = 𝐢𝐧 𝒒𝟎 ⋅ 𝐰𝐭 𝒕𝟏 ⋅ … ⋅ 𝐰𝐭 𝒕𝒏 ⋅ 𝐨𝐮𝐭(𝒒𝒏)
where 𝒕𝒊 = (𝒒𝒊−𝟏, 𝒂𝒊, 𝒒𝒊)

∥ 𝓐 ∥: 𝑨∗ → 𝑺 behavior of 𝓐

∥ 𝓐 ∥ 𝒘 = 
𝑷𝐩𝐚𝐭𝐡 𝐟𝐨𝐫 𝒘

𝐰𝐞𝐢𝐠𝐡𝐭(𝑷)

r s t
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Semirings and weighted automata 

Example: Finite Automata:  𝓐 = 𝑸,𝑻, 𝑰, 𝑭 over alphabet A
1) Let 𝑆 = 𝐵,∨,∧ with 𝐵 = {0,1} be the Boolean semiring.

Define a WFA 𝒜′ = (𝑄,wt, in, out) as follows:

wt 𝑝, 𝑎, 𝑞 = ቊ1, 𝑝, 𝑎, 𝑞 ∈ 𝑇
0, otherwise , in 𝑞 = ቊ1, 𝑞 ∈ 𝐼

0, 𝑞 ∉ 𝐼 ,   and   out 𝑞 = ቊ1, 𝑞 ∈ 𝐼
0, 𝑞 ∉ 𝐼

Then 𝒜′ is a WFA over A and S and

∀𝒘 ∈ 𝑨∗: ∥ 𝓐′ ∥ 𝒘 = 𝟏 ⇔ 𝒘 ∈ 𝑳(𝓐)

e.g. FA: 𝓐

∥ 𝓐′ ∥ 𝒂𝒃𝒂 = in 𝑟 ∧ wt 𝑟, 𝑎, 𝑟 ∧ wt 𝑟, 𝑏, 𝑟 ∧ wt 𝑟, 𝑎, 𝑟 ∧ out 𝑟 ∨

in 𝑟 ∧ wt 𝑟, 𝑎, 𝑟 ∧ wt 𝑟, 𝑏, 𝑟 ∧ wt 𝑟, 𝑎, 𝑠 ∧ out 𝑠
= 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∨ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 = 0

∥ 𝓐′ ∥ 𝒂𝒃𝒃 = in 𝑟 ∧ wt 𝑟, 𝑎, 𝑟 ∧ wt 𝑟, 𝑏, 𝑟 ∧ wt 𝑟, 𝑏, 𝑟 ∧ out 𝑟 ∨

in 𝑟 ∧ wt 𝑟, 𝑎, 𝑟 ∧ wt 𝑟, 𝑏, 𝑟 ∧ wt 𝑟, 𝑏, 𝑠 ∧ out 𝑠 ∨

in 𝑟 ∧ wt 𝑟, 𝑎, 𝑟 ∧ wt 𝑟, 𝑏, 𝑠 ∧ wt 𝑠, 𝑏, 𝑡 ∧ out 𝑡
= 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∨ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 0 ∨ 1 ∧ 1 ∧ 1 ∧ 1 ∧ 1 = 1

r s t
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b
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Semirings and weighted automata 

Example: Finite Automata:  𝓐 = 𝑸,𝑻, 𝑰, 𝑭 over alphabet A
1) Let 𝑆 = (ℕ0,+,⋅) the semiring of nonnegative integers.

Define a WFA 𝒜′ = (𝑄,wt, in, out) as follows:

wt 𝑝, 𝑎, 𝑞 = ቊ1, 𝑝, 𝑎, 𝑞 ∈ 𝑇
0, otherwise , in 𝑞 = ቊ1, 𝑞 ∈ 𝐼

0, 𝑞 ∉ 𝐼 ,   and   out 𝑞 = ቊ1, 𝑞 ∈ 𝐼
0, 𝑞 ∉ 𝐼

Then 𝒜′ is a WFA over A and S and

∀𝒘 ∈ 𝑨∗: ∥ 𝓐′ ∥ 𝒘 = #(𝐬𝐮𝐜𝐜𝐞𝐬𝐬𝐟𝐮𝐥 𝐫𝐮𝐧𝐬 𝐟𝐨𝐫 𝒘 𝐢𝐧𝓐)

e.g. FA: 𝓐

∥ 𝓐′ ∥ 𝒂𝒃𝒂 = in 𝑟 ⋅ wt 𝑟, 𝑎, 𝑟 ⋅ wt 𝑟, 𝑏, 𝑟 ⋅ wt 𝑟, 𝑎, 𝑟 ⋅ out 𝑟 +

in 𝑟 ⋅ wt 𝑟, 𝑎, 𝑟 ⋅ wt 𝑟, 𝑏, 𝑟 ⋅ wt 𝑟, 𝑎, 𝑠 ⋅ out 𝑠
= 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ 0 + 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ 1 = 1

∥ 𝓐′ ∥ 𝒂𝒃𝒃 = in 𝑟 ⋅ wt 𝑟, 𝑎, 𝑟 ⋅ wt 𝑟, 𝑏, 𝑟 ⋅ wt 𝑟, 𝑏, 𝑟 ⋅ out 𝑟 +

in 𝑟 ⋅ wt 𝑟, 𝑎, 𝑟 ⋅ wt 𝑟, 𝑏, 𝑟 ⋅ wt 𝑟, 𝑏, 𝑠 ⋅ out 𝑠 +

in 𝑟 ⋅ wt 𝑟, 𝑎, 𝑟 ⋅ wt 𝑟, 𝑏, 𝑠 ⋅ wt 𝑠, 𝑏, 𝑡 ⋅ out 𝑡
= 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ 0 + 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ 1 + 1 ⋅ 1 ⋅ 1 ⋅ 1 ⋅ 1 = 2

r s t
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Many kinds of ideals of semirings

ideals definitions

Left  ideal 𝐴 + 𝐴 ⊆ 𝐴 and 𝑆𝐴 ⊆ 𝐴

Right ideal 𝐴 + 𝐴 ⊆ 𝐴 and 𝐴𝑆 ⊆ 𝐴

Ideal 𝐴 + 𝐴 ⊆ 𝐴, 𝑆𝐴 ⊆ 𝐴 and 𝐴𝑆 ⊆ 𝐴

Quasi-ideal 𝐴 + 𝐴 ⊆ 𝐴 and 𝑆𝐴 ∩ 𝐴𝑆 ⊆ 𝐴

Bi-ideal 𝐴 + 𝐴 ⊆ 𝐴, 𝐴𝐴 ⊆ 𝐴 and 𝐴𝑆𝐴 ⊆ 𝐴

Interior ideal 𝐴 + 𝐴 ⊆ 𝐴, 𝐴𝐴 ⊆ 𝐴 and 𝑆𝐴𝑆 ⊆ 𝐴

Let (S,+,.) be a semiring and ∅ ≠ 𝑨 ⊆ 𝑺.



Many kinds of k-ideals of semirings

k-ideals definitions

k-left  ideal 𝐴 + 𝐴 ⊆ 𝐴 and 𝑆𝐴 ⊆ 𝐴

k-right ideal 𝐴 + 𝐴 ⊆ 𝐴 and 𝐴𝑆 ⊆ 𝐴

k-ideal 𝐴 + 𝐴 ⊆ 𝐴, 𝑆𝐴 ⊆ 𝐴 and 𝐴𝑆 ⊆ 𝐴

k-quasi-ideal 𝐴 + 𝐴 ⊆ 𝐴 and 𝑆𝐴 ∩ 𝐴𝑆 ⊆ 𝐴

k-bi-ideal 𝐴 + 𝐴 ⊆ 𝐴, 𝐴𝐴 ⊆ 𝐴 and 𝐴𝑆𝐴 ⊆ 𝐴

k-interior ideal 𝐴 + 𝐴 ⊆ 𝐴, 𝐴𝐴 ⊆ 𝐴 and 𝑆𝐴𝑆 ⊆ 𝐴

Let (S,+,.) be an additively commutative semiring and ∅ ≠ 𝑨 ⊆ 𝑺.

ҧ𝐴 = {𝒙 ∈ 𝑺 ∣ 𝒙 + 𝒂 ∈ 𝑨 𝐟𝐨𝐫 𝐬𝐨𝐦𝐞 𝒂 ∈ 𝑨}

𝑨 = ഥ𝑨+



k-ideals [Henriksen;1958]
What is an k-ideal ?     How important is k-ideals ?  What does “k” mean ?

M. Henriksen, Ideals in semirings with commutative addition, Amer. Math. Soc., notice 6(1958), 321.

𝑺, 𝑻 − semirings with absorbing zero

A function 𝝋: 𝑺 → 𝑻 is called a homomorphism if

𝒇 𝒂 + 𝒃 = 𝒇 𝒂 + 𝒇 𝒃 and 𝒇 𝒂𝒃 = 𝒇 𝒂 𝒇 𝒃

for all 𝒂, 𝒃 ∈ 𝑺

𝒌𝒆𝒓𝝋 = {𝒂 ∈ 𝑺 ∣ 𝝋 𝒂 = 𝟎𝑻}
---------------------------
𝑆,+,⋅ -a additively comm. semiring

A k-ideal 𝑰 of 𝑺 is an ideal of 𝑺 such that
𝒙, 𝒙 + 𝒚 ∈ 𝑰 imply that 𝒚 ∈ 𝑺.

“A subset 𝑰 of 𝑺 is the kernel of a  
homomorphism iff 𝑰 is a k-ideal.”

EX: The ideal 𝟐ℕ of the semiring (ℕ, 𝐦𝐚𝐱,⋅) is not a k-ideal, 
since 𝐦𝐚𝐱 𝟏, 𝟐 = 𝟐 ∈ 𝟐ℕ but 𝟏 ∉ 𝟐ℕ

I

#

-



A relation 𝝆 = 𝒙, 𝒚 ∈ 𝑺 × 𝑺 is an equivalence relation on a semiring 𝑺 if the 
following conditions are satisfied:
• 𝒂, 𝒂 ∈ 𝝆 for all 𝒂 ∈ 𝑺;
• 𝒂, 𝒃 ∈ 𝝆 ⇒ 𝒃, 𝒂 ∈ 𝝆 for all 𝒂, 𝒃 ∈ 𝑺;
• 𝒂, 𝒃 ∈ 𝝆 and 𝒃, 𝒄 ∈ 𝝆 ⇒ (𝒂, 𝒄) ∈ 𝝆 for all 𝒂, 𝒃, 𝒄 ∈ 𝑺.

A congruence relation on a semiring

An equivalent relation 𝝆 is a congruence on a semiring 𝑺 if for all 𝒂, 𝒃, 𝒄, 𝒅 ∈ 𝑺,

𝒂, 𝒃 , (𝒄, 𝒅) ∈ 𝝆 implies 𝒂 + 𝒄, 𝒃 + 𝒅 , 𝒂𝒄, 𝒃𝒅 ∈ 𝝆.

𝒂, 𝒃 ∈ 𝝆 implies 𝒄 + 𝒂, 𝒄 + 𝒃 , 𝒂 + 𝒄, 𝒃 + 𝒄 , 𝒄𝒂, 𝒄𝒃 , 𝒂𝒄, 𝒃𝒄 ∈ 𝝆.



Bourne’s relation (1951)
S. Bourne, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci. 37(1951), 163-170.

Bourne’s relation
𝑆, +,⋅ -a additively comm. semiring with absorbing zero
𝐼 - an ideal of 𝑆 and 𝑠, 𝑡 ∈ 𝑆

𝑠 ∼ 𝑡 ⇔ 𝑠 + 𝑖 = 𝑡 + 𝑗 for some 𝑖, 𝑗 ∈ 𝐼
⇔ 𝑠 + 𝐼 = 𝑡 + 𝐼

Then ∼ is a congruence relation on 𝑆.

Pf: Clearly, ∼ is a equivalence relation on 𝑆.
Let 𝑎, 𝑏 , 𝑐, 𝑑 ∈∼. Then 𝑎 + 𝑖1 = 𝑏 + 𝑗1 and 𝑐 + 𝑖2 = 𝑑 +
𝑗2 for some 𝑖1, 𝑖2, 𝑗1, 𝑗2 ∈ 𝐼. We have

(𝑎 + 𝑖1) + (𝑐 + 𝑖2) = (𝑏 + 𝑗1) +(𝑑 + 𝑗2)
(𝑎 + 𝑐) + 𝑖1 + 𝑖2 = (𝑏 + 𝑑) +𝑗1 +𝑗2
(𝑎 + 𝑖1)(𝑐 + 𝑖2) = (𝑏 + 𝑗1) (𝑑 + 𝑗2)

𝑎𝑐 + 𝑖1𝑐 + 𝑎𝑖2 + 𝑖1𝑖2 = 𝑏𝑑 +𝑗1 𝑑 + 𝑏𝑗2 + 𝑗1𝑗2
Then 𝑎 + 𝑐, 𝑏 + 𝑑 , 𝑎𝑐, 𝑏𝑑 ∈∼.
Now, ∼ is a congruence relation on 𝑆.       

Τ𝑆 𝐼 = { 𝑠 ∼ ∣ 𝑠 ∈ 𝑆} the set of all cong. classes.

Clearly, ( Τ𝑆 𝐼 , +,⋅) is a semiring.
[e]-+[t]v =[1 +t]-

(1]-8[t]n
=[st]

-



Bourne’s relation (1951)
S. Bourne, The Jacobson radical of a semiring, Proc. Nat. Acad. Sci. 37(1951), 163-170.

Theorem: Let 𝑰 be a k-ideal of 𝑺. The function 𝝋: 𝑺 → Τ𝑺 𝑰
defined by 𝝋 𝒔 = 𝒔 ∼ is a hom. and  𝑰 = 𝐤𝐞𝐫𝝋.
Pf: 𝑎 ∈ 𝐼 ⇒ 𝑎 + 0 = 0 + 𝑎

⇒ 𝑎 ∼ = 0 ∼

𝑎 ∼ = 0 ∼ ⇒ 𝑎 + 𝑖 = 0 + 𝑗 = 𝑗 ∃𝑖, 𝑗 ∈ 𝐼
⇒ 𝑎 ∈ 𝐼, (∵ 𝐼 is a 𝑘 − ideal)

Now, 𝑎 ∈ 𝐼 iff 𝑎 ∼ = 0 ∼ .  

Therefore,   

ker𝜑 = {𝑎 ∈ 𝑆 ∣ 𝜑 𝑎 = 𝑎 ∼ = 0 ∼}
= 𝑎 ∈ 𝑆 𝑎 ∈ 𝐼
= 𝐼.    

“A subset 𝑰 of 𝑺 is the kernel of a homomorphism iff 𝑰 is a k-ideal.”

Theorem: Let 𝝋: 𝑺 → 𝑻 be a semiring hom. Then 𝐤𝐞𝐫𝝋 is 
a k-ideal of 𝑺.

Pf: Let 𝒔 ∈ 𝑺, 𝒂, 𝒃 ∈ 𝐤𝐞𝐫𝝋. We have

𝝋 𝒂 + 𝒃 = 𝝋 𝒂 +𝝋 𝒃 = 𝟎𝑻 + 𝟎𝑻 = 𝟎𝑻.
𝝋 𝒂𝒔 = 𝝋 𝒂 𝝋 𝒔 = 𝟎𝑻𝝋 𝒔 = 𝟎𝑻.
𝝋 𝒔𝒂 = 𝝋 𝒔 𝝋 𝒂 = 𝝋 𝒔 𝟎𝑻 = 𝟎𝑻.

Assume that 𝒔 + 𝒂 = 𝒃. Then

𝟎𝑻 = 𝝋 𝒃 = 𝝋 𝒔 + 𝒂 = 𝝋 𝒔 + 𝝋 𝒂 = 𝝋 𝒔 + 𝟎𝑻 = 𝝋(𝒔).

Therefore, 𝒔 ∈ 𝐤𝐞𝐫𝝋.

Now, 𝐤𝐞𝐫𝝋 is  a k-ideal of 𝑺.



Additively inverse semirings

o An element 𝒂 of a semiring 𝑺 is called additively regular if 𝒂 = 𝒂 + 𝒃 + 𝒂, ∃𝒃 ∈ 𝑺.
o If 𝒃 is unique and 𝒃 = 𝒃 + 𝒂 + 𝒃, then 𝒃 is called the additively inverse of 𝒂.

𝒃 is usually denoted by 𝒂′

o A semiring 𝑺 is called additively 
regular if 𝒂 is additively regular for 
all 𝒂 ∈ 𝑺.

o A semiring 𝑺 is called additively 
inverse if 𝒂 has 𝒂′ for all 𝒂 ∈ 𝑺.

M. K. Sen, M. Adhikari, On k-ideals of semirings, International Journal of Mathematics and Mathematical 
Sciences, 15 (1992), 347-350. 



A relation 𝝆 = 𝒙, 𝒚 ∈ 𝑺 × 𝑺 is an equivalence relation on a semiring 𝑺 if the 
following conditions are satisfied:
• 𝒂, 𝒂 ∈ 𝝆 for all 𝒂 ∈ 𝑺;
• 𝒂, 𝒃 ∈ 𝝆 ⇒ 𝒃, 𝒂 ∈ 𝝆 for all 𝒂, 𝒃 ∈ 𝑺;
• 𝒂, 𝒃 ∈ 𝝆 and 𝒃, 𝒄 ∈ 𝝆 ⇒ (𝒂, 𝒄) ∈ 𝝆 for all 𝒂, 𝒃, 𝒄 ∈ 𝑺.

An equivalent relation 𝝆 is a congruence on a semiring 𝑺 if for all 𝒂, 𝒃, 𝒄 ∈ 𝑺,

𝒂, 𝒃 ∈ 𝝆 implies 𝒄 + 𝒂, 𝒄 + 𝒃 , 𝒂 + 𝒄, 𝒃 + 𝒄 , 𝒄𝒂, 𝒄𝒃 , 𝒂𝒄, 𝒃𝒄 ∈ 𝝆.

A ring congruence of a semiring

A congruence relation 𝝆 on a semiring 𝑺 is called a ring congruence if the quotient 
semiring 𝑺/𝝆 is a ring. 



Full k-ideals of semirings

An element 𝒆 of a semiring 𝑺 is called an additively idempotent of 𝑺 if 𝒆 + 𝒆 = 𝒆.

The set of all additively idempotent elements of a semiring 𝑺 𝐢𝐬

𝑬+ 𝑺 = {𝒙 ∈ 𝑺 ∣ 𝒙 + 𝒙 = 𝒙}.

A k-ideal 𝑨 of a semiring 𝑺 is a full k-ideal of 𝑺 if 𝑬+ 𝑺 ⊆ 𝑨.



Full k-ideals and ring congruences

Theorem A. 

Let 𝐴 be a full k-ideal of an additively inverse and commutative semiring 𝑆. 

Then the relation

𝜌𝐴 = { 𝑎, 𝑏 ∈ 𝑆 × 𝑆 ∣ 𝑎 + 𝑏′ ∈ 𝐴}

is a ring congruence of 𝑆. 𝐴 is a full k-ideal of 𝑆 ⇒ 𝑆/𝜌𝐴 is a ring.

Theorem B. 

Let 𝜌 be a congruence relation on an additively inverse and commutative 

semiring 𝑆 such that 𝑆/𝜌 is a ring. Then there exists a full k-ideal 𝐴 of 𝑆

such that 𝜌 = 𝜌𝐴. 𝑆/𝜌 is a ring ⇒ 𝜌 = 𝜌𝐴 for some a full k-ideal 𝐴.



An n-ary groupoid

An n-ary groupoid is an algebra (𝑺, 𝒇) such that 𝒇: 𝑺𝒏 → 𝑺 is an n-ary operation on 𝑺. 

Notation Let 𝑖, 𝑗, 𝑛 ∈ ℕ be such that 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. 

Let 𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑛, 𝑥 ∈ 𝑆 and 𝐴1, 𝐴, 𝐴3, … , 𝐴𝑛, 𝐴 ⊆ 𝑆. 

Sequences Representations

𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒋 𝒙𝒊
𝒋

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒋

where 𝒙𝟏 = 𝒙𝟐 = ⋯ = 𝒙𝒋 = 𝒙
𝒙𝒋

𝑨𝒊, 𝑨𝒊+𝟏, … , 𝑨𝒋 𝑨𝒊
𝒋

𝑨𝟏, 𝑨𝟐, … , 𝑨𝒋

where 𝑨𝟏 = 𝑨𝟐 = ⋯ = 𝑨𝒋 = 𝑨
𝑨𝒋



An n-ary semigroup

An n-ary groupoid (𝑺, 𝒇) is an n-ary semigroup if for each 𝟏 ≤ 𝒊 < 𝒋 ≤ 𝒏,

𝒇 𝒙𝟏𝒊−𝟏, 𝒇 𝒙𝒊𝒏+𝒊−𝟏 , 𝒙𝒏+𝒊𝟐𝒏−𝟏 = 𝒇 𝒙𝟏
𝒋−𝟏, 𝒇 𝒙𝒋

𝒏+𝒋−𝟏 , 𝒙𝒏+𝒋𝟐𝒏−𝟏

for all 𝒙𝟏𝟐𝒏−𝟏 ∈ 𝑺.



An n-ary semiring

An n-ary semiring is an algebra (𝑺, +, 𝒇) s𝐮𝐜𝐡 𝐭𝐡𝐚𝐭

o (𝑺, +) is a semigroup;

o (𝑺, 𝒇) is an n-ary semigroup;

o for each 𝟏 ≤ 𝒊 ≤ 𝒏,

𝒇 𝒙𝟏𝒊−𝟏, 𝒂 + 𝒃, 𝒙𝒊+𝟏𝒏 = 𝒇 𝒙𝟏𝒊−𝟏, 𝒂, 𝒙𝒊+𝟏𝒏 + 𝒇 𝒙𝟏𝒊−𝟏, 𝒃, 𝒙𝒊+𝟏𝒏

for all 𝒙𝟏𝒏, 𝒂, 𝒃 ∈ 𝑺.

An n-ary semiring (𝑺, +, 𝒇) is an n-ary ring if (𝑺, +) is a commutative group.

W. Dudek, On the divisibility theory in (m,n)-rings, Demonstr. Math., 14 (1981), 19–32. 



Ideals and k-ideals of n-ary semirings

Let 𝑺 be an n-ary semiring and ∅ ≠ 𝑨 ⊆ 𝑺. 

Ideals Definitions

Ideal
𝐴 + 𝐴 ⊆ 𝐴

𝑓 𝑆𝑖−1, 𝐴, 𝑆𝑛−𝑖 ⊆ 𝐴 for each 1 ≤ 𝑖 ≤ 𝑛

k-ideal

𝐴 + 𝐴 ⊆ 𝐴

𝑓 𝑆𝑖−1, 𝐴, 𝑆𝑛−𝑖 ⊆ 𝐴 for each 1 ≤ 𝑖 ≤ 𝑛

𝐴 = ҧ𝐴

ҧ𝐴 = {𝑥 ∈ 𝑆 ∣ 𝑥 + 𝑎 ∈ 𝐴 for some 𝑎 ∈ 𝐴}



Full k-ideals of additively inverse n-ary semirings

An n-ary semiring (𝑺, +, 𝒇) is additively inverse 
if (𝑺, +) is an inverse semigroup. 

An element 𝒆 of an n-ary semiring 𝑺 is called an additively idempotent of 𝑺
if 𝒆 + 𝒆 = 𝒆.

The set of all additively idempotent elements of an n-ary semiring 𝑺 𝐢𝐬

𝑬+ 𝑺 = {𝒙 ∈ 𝑺 ∣ 𝒙 + 𝒙 = 𝒙}.

A k-ideal 𝑨 of an n-ary semiring 𝑺 is a full k-ideal of 𝑺 if 𝑬+ 𝑺 ⊆ 𝑨.



An equivalent relation 𝝆 is a congruence on an n-ary semiring 𝑺 if for all 𝒂, 𝒃, 𝒄 ∈ 𝑺,

𝒂, 𝒃 ∈ 𝝆 implies 𝒄 + 𝒂, 𝒄 + 𝒃 , 𝒂 + 𝒄, 𝒃 + 𝒄 ∈ 𝝆

and for each 𝟏 ≤ 𝒊 ≤ 𝒏, 𝒙𝟏, 𝒙𝟐, …𝒙𝒏 ∈ 𝑺,

𝒇 𝒙𝟏𝒊−𝟏, 𝒂, 𝒙𝒊+𝟏𝒏 , 𝒇 𝒙𝟏𝒊−𝟏, 𝒃, 𝒙𝒊+𝟏𝒏 ∈ 𝝆.

An n-ary ring congruence of an n-ary semiring

A congruence relation 𝝆 on an n-ary semiring 𝑺 is called an n-ary ring congruence if 
the quotient n-ary semiring 𝑺/𝝆 is an n-ary ring. 



Full k-ideals and n-ary ring congruences

Theorem A. 

Let 𝐴 be a full k-ideal of an additively inverse and commutative n-ary semiring 𝑆. Then 

the relation

𝜌𝐴 = { 𝑎, 𝑏 ∈ 𝑆 × 𝑆 ∣ 𝑎 + 𝑏′ ∈ 𝐴}

is an n-ary ring congruence of 𝑆. 𝐴 is a full k-ideal of 𝑆 ⇒ 𝑆/𝜌𝐴 is an n-ary ring.

Theorem B. 

Let 𝜌 be a congruence relation on an additively inverse and commutative n-ary

semiring 𝑆 such that 𝑆/𝜌 is an n-ary ring. Then there exists a full k-ideal 𝐴 of 𝑆 such 

that 𝜌 = 𝜌𝐴.
𝑆/𝜌 is an n-ary ring ⇒ 𝜌 = 𝜌𝐴 for some a full k-ideal 𝐴.

(5,t ,f)
N
9: AM-A



Full k-ideals and n-ary ring congruences


